Invariants of skew derivations

被引:8
作者
Bergen, J [1 ]
Grzeszczuk, P
机构
[1] De Paul Univ, Dept Math, Chicago, IL 60614 USA
[2] Univ Warsaw, Math Inst, PL-15267 Bialystok, Poland
关键词
D O I
10.1090/S0002-9939-97-04045-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If sigma is an automorphism and delta is a sigma-derivation of a ring R, then the subring of invariants is the set R-(delta) = {r is an element of R \ delta(r) = 0}. The main result of this paper is Theorem, Let delta be a sigma-derivation of an algebra R over a commutative ring K such that delta(n+k)(r) + a(n-1)delta(n+k-1)(r) +...+ a(1) delta(k+1)(r) + a(0) delta(k)(r) = 0, for all r is an element of R, where a(n-1),..., a(1),a(0) is an element of K and a(0)(-1) is an element of K. (i) If Rn+1 not equal 0, then R(delta) not equal 0. (ii) If L is a delta-stable left ideal of R such that l.ann(R)(L) = 0, then L(delta) not equal 0. This theorem generalizes results on the invariants of automorphisms and derivations.
引用
收藏
页码:3481 / 3488
页数:8
相关论文
共 2 条
[1]   CONSTANTS OF LIE-ALGEBRA ACTIONS [J].
BERGEN, J .
JOURNAL OF ALGEBRA, 1988, 114 (02) :452-465
[2]  
HERSTEIN IN, 1975, ANN MAT PUR APPL, V102, P37