A reliable analytical technique for fractional Caudrey-Dodd-Gibbon equation with Mittag-Leffler kernel

被引:13
作者
Veeresha, P. [1 ]
Prakasha, D. G. [2 ]
机构
[1] Karnatak Univ, Dept Math, Dharwad 580003, Karnataka, India
[2] Davangere Univ, Fac Sci, Dept Math, Davangere 577007, Karnataka, India
来源
NONLINEAR ENGINEERING - MODELING AND APPLICATION | 2020年 / 9卷 / 01期
关键词
Laplace transform; Atangana-Baleanu derivative; Caudrey-Dodd-Gibbon equation; q-homotopy analysis method; fixed point theorem; MODEL;
D O I
10.1515/nleng-2020-0018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The pivotal aim of the present work is to find the solution for fractional Caudrey-Dodd-Gibbon (CDG) equation using q-homotopy analysis transform method (q-HATM). The considered technique is graceful amalgamations of Laplace transform technique with q-homotopy analysis scheme, and fractional derivative defined with Atangana-Baleanu (AB) operator. The fixed point hypothesis considered in order to demonstrate the existence and uniqueness of the obtained solution for the projected fractional-order model. In order to illustrate and validate the efficiency of the future technique, we analysed the projected model in terms of fractional order. Moreover, the physical behaviour of q-HATM solutions have been captured in terms of plots for diverse fractional order and the numerical simulation is also demonstrated. The obtained results elucidate that, the considered algorithm is easy to implement, highly methodical as well as accurate and very effective to examine the nature of nonlinear differential equations of arbitrary order arisen in the connected areas of science and engineering.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 65 条
[1]  
Abdollahzadeh M., 2010, Int. J. Appl. Math. Comput., V2, P81
[2]   Analysis of non-homogeneous heat model with new trend of derivative with fractional order [J].
Alkahtani, Badr Saad T. ;
Atangana, Abdon .
CHAOS SOLITONS & FRACTALS, 2016, 89 :566-571
[3]   Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits [J].
Alshabanat, Amal ;
Jleli, Mohamed ;
Kumar, Sunil ;
Samet, Bessem .
FRONTIERS IN PHYSICS, 2020, 8
[4]  
Alvaro H S., 2011, Int. J. Phys. Sci, V6, P7729
[5]  
[Anonymous], 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[6]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[7]   Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
ENTROPY, 2015, 17 (06) :4439-4453
[8]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[9]   Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations [J].
Baleanu, Dumitru ;
Wu, Guo-Cheng ;
Zeng, Sheng-Da .
CHAOS SOLITONS & FRACTALS, 2017, 102 :99-105
[10]   On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics [J].
Baskonus, H. M. ;
Sulaiman, T. A. ;
Bulut, H. .
INDIAN JOURNAL OF PHYSICS, 2019, 93 (03) :393-399