META-CLASSIFICATION FOR VARIABLE STARS

被引:18
作者
Pichara, Karim [1 ,2 ,3 ]
Protopapas, Pavlos [2 ]
Leon, Daniel [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Comp Sci, Alameda 340, Santiago, Chile
[2] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[3] Millennium Inst Astrophys, Santiago, Chile
关键词
methods: data analysis; stars: statistics; stars: variables: general; surveys; SELECTION; VARIABILITY; CANDIDATES; ALGORITHM;
D O I
10.3847/0004-637X/819/1/18
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The need for the development of automatic tools to explore astronomical databases has been recognized since the inception of CCDs and modern computers. Astronomers already have developed solutions to tackle several science problems, such as automatic classification of stellar objects, outlier detection, and globular clusters identification, among others. New scientific problems emerge, and it is critical to be able to reuse the models learned before, without rebuilding everything from the beginning when the sciencientific problem changes. In this paper, we propose a new meta-model that automatically integrates existing classification models of variable stars. The proposed meta-model incorporates existing models that are trained in a different context, answering different questions and using different representations of data. A conventional mixture of expert algorithms in machine learning literature cannot be used since each expert (model) uses different inputs. We also consider the computational complexity of the model by using the most expensive models only when it is necessary. We test our model with EROS-2 and MACHO data sets, and we show that we solve most of the classification challenges only by training a meta-model to learn how to integrate the previous experts.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram [J].
Eyer, L. ;
Rimoldini, L. ;
Audard, M. ;
Anderson, R., I ;
Nienartowicz, K. ;
Glass, F. ;
Marchal, O. ;
Grenon, M. ;
Mowlavi, N. ;
Holl, B. ;
Clementini, G. ;
Aerts, C. ;
Mazeh, T. ;
Evans, D. W. ;
Szabados, L. ;
Brown, A. G. A. ;
Vallenari, A. ;
Prusti, T. ;
de Bruijne, J. H. J. ;
Babusiaux, C. ;
Bailer-Jones, C. A. L. ;
Biermann, M. ;
Jansen, F. ;
Jordi, C. ;
Klioner, S. A. ;
Lammers, U. ;
Lindegren, L. ;
Luri, X. ;
Mignard, F. ;
Panem, C. ;
Pourbaix, D. ;
Randich, S. ;
Sartoretti, P. ;
Siddiqui, H., I ;
Soubiran, C. ;
van Leeuwen, F. ;
Walton, N. A. ;
Arenou, F. ;
Bastian, U. ;
Cropper, M. ;
Drimmel, R. ;
Katz, D. ;
Lattanzi, M. G. ;
Bakker, J. ;
Cacciari, C. ;
Castaneda, J. ;
Chaoul, L. ;
Cheek, N. ;
De Angeli, F. ;
Fabricius, C. .
ASTRONOMY & ASTROPHYSICS, 2019, 623
[22]   ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA [J].
Richards, Joseph W. ;
Starr, Dan L. ;
Butler, Nathaniel R. ;
Bloom, Joshua S. ;
Brewer, John M. ;
Crellin-Quick, Arien ;
Higgins, Justin ;
Kennedy, Rachel ;
Rischard, Maxime .
ASTROPHYSICAL JOURNAL, 2011, 733 (01)
[23]   Periodic variable A-F spectral type stars in the southern TESS continuous viewing zone [J].
Skarka, M. ;
Henzl, Z. .
ASTRONOMY & ASTROPHYSICS, 2024, 688
[24]   Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era [J].
Bloom, J. S. ;
Richards, J. W. ;
Nugent, P. E. ;
Quimby, R. M. ;
Kasliwal, M. M. ;
Starr, D. L. ;
Poznanski, D. ;
Ofek, E. O. ;
Cenko, S. B. ;
Butler, N. R. ;
Kulkarni, S. R. ;
Gal-Yam, A. ;
Law, N. .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (921) :1175-1196
[25]   Comparative clustering analysis of variable stars in the Hipparcos, OGLE Large Magellanic Cloud, and CoRoT exoplanet databases [J].
Sarro, L. M. ;
Debosscher, J. ;
Aerts, C. ;
Lopez, M. .
ASTRONOMY & ASTROPHYSICS, 2009, 506 (01) :535-568
[26]   Automated supervised classification of variable stars in the CoRoT programme Method and application to the first four exoplanet fields [J].
Debosscher, J. ;
Sarro, L. M. ;
Lopez, M. ;
Deleuil, M. ;
Aerts, C. ;
Auvergne, M. ;
Baglin, A. ;
Baudin, F. ;
Chadid, M. ;
Charpinet, S. ;
Cuypers, J. ;
De Ridder, J. ;
Garrido, R. ;
Hubert, A. M. ;
Janot-Pacheco, E. ;
Jorda, L. ;
Kaiser, A. ;
Kallinger, T. ;
Kollath, Z. ;
Maceroni, C. ;
Mathias, P. ;
Michel, E. ;
Moutou, C. ;
Neiner, C. ;
Ollivier, M. ;
Samadi, R. ;
Solano, E. ;
Surace, C. ;
Vandenbussche, B. ;
Weiss, W. W. .
ASTRONOMY & ASTROPHYSICS, 2009, 506 (01) :519-534
[27]   Deep transfer learning for the classification of variable sources [J].
Kim, Dae-Won ;
Yeo, Doyeob ;
Bailer-Jones, Coryn A. L. ;
Lee, Giyoung .
ASTRONOMY & ASTROPHYSICS, 2021, 653
[28]   Machine learning search for variable stars [J].
Pashchenko, Ilya N. ;
Sokolovsky, Kirill V. ;
Gavras, Panagiotis .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 475 (02) :2326-2343
[29]   Variable stars in the Bochum Galactic Disk Survey [J].
Kaderhandt, L. ;
Barr Dominguez, A. ;
Chini, R. ;
Hackstein, M. ;
Haas, M. ;
Pozo Nunez, F. ;
Murphy, M. .
ASTRONOMISCHE NACHRICHTEN, 2015, 336 (07) :677-681
[30]   Semiregular Variable Stars [J].
Kudashkina, L. S. .
ASTROPHYSICS, 2019, 62 (04) :556-572