Carbon-Coated Anatase TiO2 Nanotubes for Li- and Na-Ion Anodes

被引:76
|
作者
Bresser, Dominic [1 ,2 ,3 ,4 ]
Oschmann, Bernd [5 ,6 ]
Tahir, Muhammad N. [7 ]
Mueller, Franziska [1 ,2 ,3 ,4 ]
Lieberwirth, Ingo [8 ]
Tremel, Wolfgang [7 ]
Zentel, Rudolf [5 ]
Passerini, Stefano [1 ,2 ,3 ,4 ]
机构
[1] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[2] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany
[3] HIU, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Organ Chem, D-55128 Mainz, Germany
[6] Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany
[7] Johannes Gutenberg Univ Mainz, Inst Inorgan & Analyt Chem, D-55128 Mainz, Germany
[8] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
ELECTRICAL ENERGY-STORAGE; LITHIUM-STORAGE; HIGH-POWER; PARTICLE-SIZE; ELECTROCHEMICAL CHARACTERIZATION; ELECTRODE MATERIALS; TITANIUM-DIOXIDE; INSERTION; SODIUM; BATTERIES;
D O I
10.1149/2.0031502jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon-coated, anatase titanium dioxide nanotubes were prepared by carbonizing a polyacrylonitrile-based block copolymer grafted on the as-synthesized titanate nanotubes. As revealed by high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS), this approach results in a very homogeneous and thin carbon coating, which is advantageous for those active materials storing lithium without undergoing significant volume changes upon ion (de-)insertion. As a matter of fact, thus prepared carbon-coated TiO2 nanotubes presented an excellent long-term cycling stability for more than 500 cycles (0.02% capacity fading per cycle) and a very promising high rate performance (about 130 and 110 mAh g(-1) at 10 C and 15 C, respectively). The influence of the tubular morphology on the rate performance is briefly discussed by comparing carbon-coated nanotubes and nanorods. Finally, the carbon-coated nanotubes were also investigated as sodium-ion anode material, showing very promising reversible capacities of around 170, 120, and 100 mAh g(-1) at C/10, 1 C, and 2 C, respectively, rendering them as versatile anode material for lithium-and sodium-ion applications (C) The Author(s) 2014. Published by ECS. All rights reserved.
引用
收藏
页码:A3013 / A3020
页数:8
相关论文
共 50 条
  • [1] N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes
    Wang, Jin
    Liu, Guiyu
    Fan, Kaili
    Zhao, Dan
    Liu, Beibei
    Jiang, Jianbo
    Qian, Dong
    Yang, Chunming
    Li, Junhua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 517 : 134 - 143
  • [2] Structural Study of Carbon-Coated TiO2 Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries
    Greco, Giorgia
    Mazzio, Katherine A.
    Dou, Xinwei
    Gericke, Eike
    Wendt, Robert
    Krumrey, Michael
    Passerini, Stefano
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (10) : 7142 - 7151
  • [3] Electrospun NiCo2O4 nanotubes as anodes for Li- and Na-ion batteries
    Li, Linlin
    Ding, Yonghao
    Yu, Deshuang
    Li, Lei
    Ramakrishna, Seeram
    Peng, Shengjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 : 1286 - 1293
  • [4] Anatase TiO2 nanotubes as Li-ion battery anodes: A molecular dynamics study of Li-ion adsorption on anatase nanotubes
    Zeydabadi-Nejad, Iman
    Zolfaghari, Naeem
    Mashhadi, Mahmoud Mousavi
    Baghani, Mostafa
    Baniassadi, Majid
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47
  • [5] Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries
    Yan, Zhanheng
    Yang, Qin-Wen
    Wang, Qinghong
    Ma, Jianmin
    CHINESE CHEMICAL LETTERS, 2020, 31 (02) : 583 - 588
  • [6] Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries
    Lyu, Zhiyang
    Yang, Lijun
    Xu, Dan
    Zhao, Jin
    Lai, Hongwei
    Jiang, Yufei
    Wu, Qiang
    Li, Yi
    Wang, Xizhang
    Hu, Zheng
    NANO RESEARCH, 2015, 8 (11) : 3535 - 3543
  • [7] Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries
    Zhiyang Lyu
    Lijun Yang
    Dan Xu
    Jin Zhao
    Hongwei Lai
    Yufei Jiang
    Qiang Wu
    Yi Li
    Xizhang Wang
    Zheng Hu
    Nano Research, 2015, 8 : 3535 - 3543
  • [8] Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode
    Tahir, Muhammad Nawaz
    Oschmann, Bernd
    Buchholz, Daniel
    Dou, Xinwei
    Lieberwirth, Ingo
    Panthoefer, Martin
    Tremel, Wolfgang
    Zentel, Rudolf
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2016, 6 (04)
  • [9] Reversible Li and Na storage behaviors of perylenetetracarboxylates as organic anodes for Li- and Na-ion batteries
    Zhao, R. R.
    Cao, Y. L.
    Ai, X. P.
    Yang, H. X.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 688 : 93 - 97
  • [10] Preparation, characterization, and electrochemical performances of carbon-coated TiO2 anatase
    Manuel Pfanzelt
    Pierre Kubiak
    Ute Hörmann
    Ute Kaiser
    Margret Wohlfahrt-Mehrens
    Ionics, 2009, 15 : 657 - 663