Comparison Between Air and SF6 Breakdown by Microwaves at High Pressure

被引:2
作者
Zhao, Pengcheng [1 ]
Guo, Lixin [1 ]
Zhao, Hua [1 ]
Chang, Chao [2 ,3 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwest Inst Nucl Technol, Sci & Technol High Power Microwave Lab, Xian 710024, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Minist Educ, Key Lab Phys Elect & Devices, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Air breakdown; fluid model; high-power microwaves; SF6; breakdown; SURFACE FLASHOVER; GLOBAL-MODEL; POWER;
D O I
10.1109/TPS.2018.2836972
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model coupling Maxwell's equations with electron fluid equations is used to simulate air and SF6 breakdown at high pressure by microwaves radiated from a circular waveguide. The modeling for microwaves radiated from a circular waveguide is validated by comparing its results with those from the commercial software FEKO. Under a fixed initial growth rate of electron density in the maximum radiated field, the space and time evolution of electron density in SF6 breakdown is similar to that in air breakdown. However, SF6 plasma causes less change in the radiated field than air plasma. This is because the saturation electron density playing an important role in absorption and scattering by plasma is lower in SF6 than in air. The ratio of critical radiated power in SF6 to that in air increases as pulsewidth or gas pressure increases. The breakdown threshold from simulations as a function of pressure shows the same trend as the experiment.
引用
收藏
页码:2794 / 2799
页数:6
相关论文
共 19 条
[1]   Global Model for Total Delay Time Distribution of High-Power Microwave Surface Flashover [J].
Beeson, Sterling R. ;
Dickens, James C. ;
Neuber, Andreas A. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (11) :3450-3457
[2]   Nanosecond Discharge at the Interfaces of Flat and Periodic Ripple Surfaces of Dielectric Window with Air at Varied Pressure [J].
Chang, C. ;
Verboncoeur, J. ;
Wei, F. L. ;
Xie, J. L. ;
Sun, J. ;
Liu, Y. S. ;
Liu, C. L. ;
Wu, C. .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (01) :375-381
[3]   Improving the microwave window breakdown threshold by using a fluorinated, periodically patterned surface [J].
Chen, C. H. ;
Chang, C. ;
Liu, W. Y. ;
Sun, J. ;
Huang, H. J. ;
Ke, C. F. ;
Song, W. ;
Teng, Y. ;
Wu, X. L. ;
Xie, J. L. ;
Zhu, M. ;
Li, S. ;
Fang, J. P. ;
Wu, P. ;
Zhang, L. J. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (16)
[4]   Millimeter wave scattering and diffraction in 110 GHz air breakdown plasma [J].
Cook, Alan M. ;
Hummelt, Jason S. ;
Shapiro, Michael A. ;
Temkin, Richard J. .
PHYSICS OF PLASMAS, 2013, 20 (04)
[5]   A finite-difference time-domain simulation of high power microwave generated plasma at atmospheric pressures [J].
Ford, Patrick J. ;
Beeson, Sterling R. ;
Krompholz, Hermann G. ;
Neuber, Andreas A. .
PHYSICS OF PLASMAS, 2012, 19 (07)
[6]   Rapid Formation of Dielectric Surface Flashover due to Pulsed High Power Microwave Excitation [J].
Foster, J. ;
Beeson, S. ;
Thomas, M. ;
Krile, J. ;
Krompholz, H. ;
Neuber, A. .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2011, 18 (04) :964-970
[7]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[8]   Transition of window breakdown from vacuum multipactor discharge to rf plasma [J].
Kim, H. C. ;
Verboncoeur, J. P. .
PHYSICS OF PLASMAS, 2006, 13 (12)
[9]   ABSORBING BOUNDARY-CONDITIONS FOR THE FINITE-DIFFERENCE APPROXIMATION OF THE TIME-DOMAIN ELECTROMAGNETIC-FIELD EQUATIONS [J].
MUR, G .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1981, 23 (04) :377-382
[10]   Global model for high power microwave breakdown at high pressure in air [J].
Nam, Sang Ki ;
Verboncoeur, John P. .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (04) :628-635