Tempered fractional Feynman-Kac equation: Theory and examples

被引:71
|
作者
Wu, Xiaochao [1 ]
Deng, Weihua [1 ]
Barkai, Eli [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Bar Ilan Univ, Dept Phys, Adv Mat & Nanotechnol Inst, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
DIFFUSION; TIME; STATISTICS; MOTION; SPACE;
D O I
10.1103/PhysRevE.93.032151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Functionals of Brownian and non-Brownian motions have diverse applications and attracted a lot of interest among scientists. This paper focuses on deriving the forward and backward fractional Feynman-Kac equations describing the distribution of the functionals of the space and time-tempered anomalous diffusion, belonging to the continuous time random walk class. Several examples of the functionals are explicitly treated, including the occupation time in half-space, the first passage time, the maximal displacement, the fluctuations of the occupation fraction, and the fluctuations of the time-averaged position.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] THE STOCHASTIC HEAT-EQUATION - FEYNMAN-KAC FORMULA AND INTERMITTENCE
    BERTINI, L
    CANCRINI, N
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) : 1377 - 1401
  • [42] Annealed Feynman-Kac models
    Del Moral, P
    Miclo, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (02) : 191 - 214
  • [43] Correction of High-Order BDF Convolution Quadrature for Fractional Feynman-Kac Equation with Levy Flight
    Shi, Jiankang
    Chen, Minghua
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [44] Feynman-Kac representation for the parabolic Anderson model driven by fractional noise
    Kalbasi, Kamran
    Mountford, Thomas S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) : 1234 - 1263
  • [45] COSINE FUNCTIONS AND THE FEYNMAN-KAC FORMULA
    GOLDSTEIN, JA
    QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (131): : 303 - 307
  • [46] A Feynman-Kac formula for geometric quantization
    郭懋正
    钱敏
    王正栋
    ScienceinChina,SerA., 1996, Ser.A.1996 (03) : 238 - 245
  • [47] Counting statistics: A Feynman-Kac perspective
    Zoia, A.
    Dumonteil, E.
    Mazzolo, A.
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [48] SOME REMARKS ON THE FEYNMAN-KAC FORMULA
    BRZEZNIAK, Z
    JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) : 105 - 107
  • [49] Feynman-Kac equation for Brownian non-Gaussian polymer diffusion
    Zhou, Tian
    Wang, Heng
    Deng, Weihua
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (28)
  • [50] The contour integral method for Feynman-Kac equation with two internal states
    Ma, Fugui
    Zhao, Lijing
    Wang, Yejuan
    Deng, Weihua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 151 : 80 - 100