Tempered fractional Feynman-Kac equation: Theory and examples

被引:71
|
作者
Wu, Xiaochao [1 ]
Deng, Weihua [1 ]
Barkai, Eli [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Bar Ilan Univ, Dept Phys, Adv Mat & Nanotechnol Inst, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
DIFFUSION; TIME; STATISTICS; MOTION; SPACE;
D O I
10.1103/PhysRevE.93.032151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Functionals of Brownian and non-Brownian motions have diverse applications and attracted a lot of interest among scientists. This paper focuses on deriving the forward and backward fractional Feynman-Kac equations describing the distribution of the functionals of the space and time-tempered anomalous diffusion, belonging to the continuous time random walk class. Several examples of the functionals are explicitly treated, including the occupation time in half-space, the first passage time, the maximal displacement, the fluctuations of the occupation fraction, and the fluctuations of the time-averaged position.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Derivatives of Feynman-Kac Semigroups
    Thompson, James
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 950 - 973
  • [32] Multilevel Monte Carlo for the Feynman-Kac formula for the Laplace equation
    Pauli, Stefan
    Gantner, Robert Nicholas
    Arbenz, Peter
    Adelmann, Andreas
    BIT NUMERICAL MATHEMATICS, 2015, 55 (04) : 1125 - 1143
  • [33] A FEYNMAN-KAC SOLUTION TO A RANDOM IMPULSIVE EQUATION OF SCHRODINGER TYPE
    Bonotto, E. M.
    Federson, M.
    Muldowney, P.
    REAL ANALYSIS EXCHANGE, 2010, 36 (01) : 107 - 148
  • [34] A DISCRETE FEYNMAN-KAC FORMULA
    CSAKI, E
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (01) : 63 - 73
  • [35] Versions of the Feynman-KAC formula
    Borodin A.N.
    Journal of Mathematical Sciences, 2000, 99 (2) : 1044 - 1052
  • [36] Annealed Feynman-Kac Models
    P. Del Moral
    L. Miclo
    Communications in Mathematical Physics, 2003, 235 : 191 - 214
  • [37] STOCHASTIC FEYNMAN-KAC FORMULA
    USTUNEL, AS
    JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 : 155 - 165
  • [38] Quantum Feynman-Kac perturbations
    Belton, Alexander C. R.
    Lindsay, J. Martin
    Skalski, Adam G.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 275 - 300
  • [39] STOCHASTIC FEYNMAN-KAC FORMULA
    USTUNEL, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (12): : 595 - 597
  • [40] Filtering the Feynman-Kac formula
    Fox, BL
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) : 2179 - 2199