共 50 条
Tempered fractional Feynman-Kac equation: Theory and examples
被引:71
|作者:
Wu, Xiaochao
[1
]
Deng, Weihua
[1
]
Barkai, Eli
[2
]
机构:
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Bar Ilan Univ, Dept Phys, Adv Mat & Nanotechnol Inst, IL-52900 Ramat Gan, Israel
基金:
以色列科学基金会;
中国国家自然科学基金;
关键词:
DIFFUSION;
TIME;
STATISTICS;
MOTION;
SPACE;
D O I:
10.1103/PhysRevE.93.032151
中图分类号:
O35 [流体力学];
O53 [等离子体物理学];
学科分类号:
070204 ;
080103 ;
080704 ;
摘要:
Functionals of Brownian and non-Brownian motions have diverse applications and attracted a lot of interest among scientists. This paper focuses on deriving the forward and backward fractional Feynman-Kac equations describing the distribution of the functionals of the space and time-tempered anomalous diffusion, belonging to the continuous time random walk class. Several examples of the functionals are explicitly treated, including the occupation time in half-space, the first passage time, the maximal displacement, the fluctuations of the occupation fraction, and the fluctuations of the time-averaged position.
引用
收藏
页数:15
相关论文