Tempered fractional Feynman-Kac equation: Theory and examples

被引:71
|
作者
Wu, Xiaochao [1 ]
Deng, Weihua [1 ]
Barkai, Eli [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Peoples R China
[2] Bar Ilan Univ, Dept Phys, Adv Mat & Nanotechnol Inst, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
DIFFUSION; TIME; STATISTICS; MOTION; SPACE;
D O I
10.1103/PhysRevE.93.032151
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Functionals of Brownian and non-Brownian motions have diverse applications and attracted a lot of interest among scientists. This paper focuses on deriving the forward and backward fractional Feynman-Kac equations describing the distribution of the functionals of the space and time-tempered anomalous diffusion, belonging to the continuous time random walk class. Several examples of the functionals are explicitly treated, including the occupation time in half-space, the first passage time, the maximal displacement, the fluctuations of the occupation fraction, and the fluctuations of the time-averaged position.
引用
收藏
页数:15
相关论文
共 49 条
  • [1] Numerical schemes of the time tempered fractional Feynman-Kac equation
    Deng, W. H.
    Zhang, Z. J.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1063 - 1076
  • [2] TIME DISCRETIZATION OF A TEMPERED FRACTIONAL FEYNMAN-KAC EQUATION WITH MEASURE DATA
    Deng, Weihua
    Li, Buyang
    Qian, Zhi
    Wang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) : 3249 - 3275
  • [3] High Order Algorithm for the Time-Tempered Fractional Feynman-Kac Equation
    Chen, Minghua
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (02) : 867 - 887
  • [4] Fractional Feynman-Kac equation for weak ergodicity breaking
    Carmi, Shai
    Barkai, Eli
    PHYSICAL REVIEW E, 2011, 84 (06)
  • [5] Fractional Feynman-Kac Equation with Space-Dependent Anomalous Exponent
    Zhang, Hong
    Li, Guo-Hua
    Luo, Mao-Kang
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (06) : 1194 - 1206
  • [6] Efficient Jacobian Spectral Collocation Method for Spatio-Dependent Temporal Tempered Fractional Feynman-Kac Equation
    Zhao, Tinggang
    Zhao, Lijing
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [7] Feynman-Kac equation revisited
    Wang, Xudong
    Chen, Yao
    Deng, Weihua
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [8] Aging Feynman-Kac equation
    Wang, Wanli
    Deng, Weihua
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (01)
  • [9] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
    Hu, Jiahui
    Wang, Jungang
    Nie, Yufeng
    Luo, Yanwei
    CHINESE PHYSICS B, 2019, 28 (10)
  • [10] Numerical Algorithms for the Forward and Backward Fractional Feynman-Kac Equations
    Deng, Weihua
    Chen, Minghua
    Barkai, Eli
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (03) : 718 - 746