Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

被引:230
|
作者
Johnson, Donald F. [2 ]
Carter, Emily A. [1 ,3 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[3] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
关键词
TOTAL-ENERGY CALCULATIONS; SUPERABUNDANT VACANCIES; DEUTERIUM RETENTION; THERMAL-DESORPTION; H-2; DISSOCIATION; 110; PLANE; SURFACE; CHEMISORPTION; ADSORPTION; W(110);
D O I
10.1557/JMR.2010.0036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the interaction between atomic hydrogen and solid tungsten is important for the development of fusion reactors in which proposed tungsten walls would be bombarded with high energy particles including hydrogen isotopes. Here, we report results from periodic density-functional theory calculations for three crucial aspects of this interaction: surface-to-subsurface diffusion of H into W, trapping of H at vacancies, and H-enhanced decohesion, with a view to assess the likely extent of hydrogen isotope incorporation into tungsten reactor walls. We find energy barriers of (at least) 2.08 eV and 1.77 eV for H uptake (inward diffusion) into W(001) and W(1 10) surfaces, respectively, along with very small barriers for the reverse process (outward diffusion). Although H dissolution in defect-free bulk W is predicted to be endothermic, vacancies in bulk W are predicted to exothermically trap multiple H atoms. Furthermore, adsorbed hydrogen is predicted to greatly stabilize W surfaces such that decohesion (fracture) may result from high local H concentrations.
引用
收藏
页码:315 / 327
页数:13
相关论文
共 50 条
  • [21] Hydrogen diffusion and trapping in a steel containing porosities
    Yaktiti, A.
    Dreano, A.
    Carton, J. F.
    Christien, F.
    CORROSION SCIENCE, 2022, 199
  • [22] Study of hydrogen isotopes behavior in tungsten by a multi trapping macroscopic rate equation model
    Hodille, E. A.
    Ferro, Y.
    Fernandez, N.
    Becquart, C. S.
    Angot, T.
    Layet, J. M.
    Bisson, R.
    Grisolia, C.
    PHYSICA SCRIPTA, 2016, T167
  • [23] Trapping of hydrogen and helium at dislocations in tungsten: an ab initio study
    Bakaev, A.
    Grigorev, P.
    Terentyev, D.
    Bakaeva, A.
    Zhurkin, E. E.
    Mastrikov, Yu. A.
    NUCLEAR FUSION, 2017, 57 (12)
  • [24] First-principles investigation on vacancy trapping behaviors of hydrogen in vanadium
    Gui, Li-Jiang
    Liu, Yue-Lin
    Wang, Wei-Tian
    Jin, Shuo
    Zhang, Ying
    Lu, Guang-Hong
    Yao, Jun-En
    JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) : S688 - S693
  • [25] Hydrogen diffusion in tungsten: A molecular dynamics study
    Liu, Yi-Nan
    Wu, Tiefeng
    Yu, Yi
    Li, Xiao-Chun
    Shu, Xiaolin
    Lu, Guang-Hong
    JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) : 676 - 680
  • [26] Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary
    Yu, Yi
    Shu, Xiaolin
    Liu, Yi-Nan
    Lu, Guang-Hong
    JOURNAL OF NUCLEAR MATERIALS, 2014, 455 (1-3) : 91 - 95
  • [27] Molecular Dynamics Study on the Diffusion Properties of Hydrogen Atoms in Bulk Tungsten
    Yu Xingang
    Gou Fujun
    PLASMA SCIENCE & TECHNOLOGY, 2013, 15 (07) : 710 - 715
  • [28] Kinetic Monte Carlo simulation on influence of vacancy on hydrogen diffusivity in tungsten
    Oda, Takuji
    Zhu, Deqiong
    Watanabe, Yoshiyuki
    JOURNAL OF NUCLEAR MATERIALS, 2015, 467 : 439 - 447
  • [29] Hydrogen assisted vacancy formation in tungsten: A first-principles investigation
    Qin, Shi-Yao
    Jin, Shuo
    Sun, Lu
    Zhou, Hong-Bo
    Zhang, Ying
    Lu, Guang-Hong
    JOURNAL OF NUCLEAR MATERIALS, 2015, 465 : 135 - 141
  • [30] Hydrogen interactions with low-index surface orientations of tungsten
    Bergstrom, Z. J.
    Li, C.
    Samolyuk, G. D.
    Uberuaga, B. P.
    Wirth, B. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (25)