Tailored Silicon Nanopost Arrays for Resonant Nanophotonic Ion Production

被引:72
作者
Walker, Bennett N. [1 ]
Stolee, Jessica A. [1 ]
Pickel, Deanna L. [2 ]
Retterer, Scott T. [2 ]
Vertes, Akos [1 ]
机构
[1] George Washington Univ, Dept Chem, Washington, DC 20052 USA
[2] Oak Ridge Natl Lab, Mat Sci & Biosci Div, Oak Ridge, TN 37831 USA
关键词
LASER DESORPTION/IONIZATION; INDUCED DISSOCIATION; FIELD ENHANCEMENT; OPTICAL ANTENNAS; FEMTOSECOND; FRAGMENTATION; ABLATION; PEPTIDE;
D O I
10.1021/jp9110103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructures that have dimensions Commensurate with the wavelength of the electromagnetic radiation exhibit near-field effects and, as optical antennas, can Couple laser radiation to the local environment. Laser-induced silicon microcolumn arrays behave as nanophotonic ion sources that can be modulated by rotating the plane of light polarization. However, the limited range Of Surface morphologies available for these Substrates makes it difficult to study the underlying mechanism that governs ion production. Here we demonstrate that nanopost arrays (NAPAs) can be tailored to exhibit resonant ion production. Ion yields from posts with subwavelength diameter show sharp resonances at high aspect ratios. The resonant enhancement in ion intensities can be modulated by adjusting, the periodicity. In addition to strong molecular ion formation, the presence of high-energy fragmentation channels is observed. Ion yields From NAPAs exhibit dramatic differences for p- and s-polarized laser beams. indicating that energy coupling is Similar 10 antenna arrays. These nanophotonic ion sources can Control the degree of ion fragmentation and could eventually be integrated with micromachined mass spectrometers and microfluidic devices.
引用
收藏
页码:4835 / 4840
页数:6
相关论文
共 33 条
[1]   THE ACTION OF POWERFUL LASER-RADIATION ON SURFACES OF SEMICONDUCTORS AND METALS - NONLINEAR OPTICAL EFFECTS AND NONLINEAR OPTICAL DIAGNOSTICS [J].
AKHMANOV, SA ;
EMELYANOV, VI ;
KOROTEYEV, NI ;
SEMINOGOV, VN .
USPEKHI FIZICHESKIKH NAUK, 1985, 147 (04) :675-745
[2]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[3]   CONTRIBUTIONS OF MASS-SPECTROMETRY TO PEPTIDE AND PROTEIN-STRUCTURE [J].
BIEMANN, K .
BIOMEDICAL AND ENVIRONMENTAL MASS SPECTROMETRY, 1988, 16 (1-12) :99-111
[4]   Field enhancement in apertureless near-field scanning optical microscopy [J].
Bohn, JL ;
Nesbitt, DJ ;
Gallagher, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (12) :2998-3006
[5]  
Chen G, 2001, PHYS REV LETT, V86, P2297, DOI 10.1103/PhysRevLett86.2297
[6]   Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays [J].
Chen, Yong ;
Vertes, Akos .
ANALYTICAL CHEMISTRY, 2006, 78 (16) :5835-5844
[7]   Confined plasmons in metallic nanocavities [J].
Coyle, S ;
Netti, MC ;
Baumberg, JJ ;
Ghanem, MA ;
Birkin, PR ;
Bartlett, PN ;
Whittaker, DM .
PHYSICAL REVIEW LETTERS, 2001, 87 (17) :176801-176801
[8]   Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon [J].
Crouch, CH ;
Carey, JE ;
Warrender, JM ;
Aziz, MJ ;
Mazur, E ;
Génin, FY .
APPLIED PHYSICS LETTERS, 2004, 84 (11) :1850-1852
[9]   Optical antennas: Resonators for local field enhancement [J].
Crozier, KB ;
Sundaramurthy, A ;
Kino, GS ;
Quate, CF .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (07) :4632-4642
[10]   Plasmonic laser antenna [J].
Cubukcu, Ertugrul ;
Kort, Eric A. ;
Crozier, Kenneth B. ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2006, 89 (09)