Rolling Bearing Fault Diagnosis Method Base on Periodic Sparse Attention and LSTM

被引:70
|
作者
An, Yiyao [1 ]
Zhang, Ke [1 ]
Liu, Qie [1 ]
Chai, Yi [1 ]
Huang, Xinghua [1 ]
机构
[1] Chongqing Univ, Coll Automat, Chongqing 400044, Peoples R China
关键词
Feature extraction; Vibrations; Rolling bearings; Fault diagnosis; Time series analysis; Interference; Computational complexity; Attention mechanism; LSTM; intermittent faults diagnosis; rolling bearing; ROTATING MACHINERY; MODEL; ENTROPY;
D O I
10.1109/JSEN.2022.3173446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rolling bearing fault signals are complex time series with complex dynamic characteristics and non-uniform periodicity due to the influence of random interference, such as random impulse noise and equipment vibration. This will affect the accuracy of the diagnostis method. This paper analyses the characteristics of bearing fault signals and discussed the basic ideas of current diagnosis methods. In order to decrease the computational complexity in time series analysis process and reduce the influence of random interference in subsequent feature extraction, this paper proposes a rolling bearing fault diagnosis method base on periodic sparse attention and LSTM (PSAL) for non-uniform bearing vibration signals. According to the periodic characteristics of bearing fault, a periodic sparse attention network is proposed to decrease the time consumption in the process of reducing the influence of random interference and enhancing the feature. Then, LSTM is used to extract long-term dependence features in the fault signals. Finally, two sets of rolling bearing datasets are adopted to verify the validity and superiority of the proposed method by comparing with other methods.
引用
收藏
页码:12044 / 12053
页数:10
相关论文
共 50 条
  • [21] Rolling bearing fault feature extraction using non-convex periodic group sparse method
    Hai, Bin
    Jiang, Hongkai
    Yao, Pei
    Wang, Kaibo
    Yao, Renhe
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (10)
  • [22] Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition
    The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
    Jixie Gongcheng Xuebao, 2013, 1 (88-94):
  • [23] An adaptive generalized logarithm sparse regularization method and its application in rolling bearing fault diagnosis
    Qin, Limu
    Yang, Gang
    Lv, Kun
    Sun, Qi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [24] An adaptive group sparse feature decomposition method in frequency domain for rolling bearing fault diagnosis
    Zheng, Kai
    Yao, Dengke
    Shi, Yang
    Wei, Bo
    Yang, Dewei
    Zhang, Bin
    ISA TRANSACTIONS, 2023, 138 : 562 - 581
  • [25] A clustering K-SVD-based sparse representation method for rolling bearing fault diagnosis
    Yu, Qingwen
    Li, Jimeng
    Li, Zhixin
    Zhang, Jinfeng
    INSIGHT, 2021, 63 (03) : 160 - 167
  • [26] A Novel Periodic Cyclic Sparse Network With Entire Domain Adaptation for Deep Transfer Fault Diagnosis of Rolling Bearing
    Xing, Zhan
    Yi, Cai
    Lin, Jianhui
    Zhou, Qiuyang
    IEEE SENSORS JOURNAL, 2023, 23 (12) : 13452 - 13468
  • [27] Fault Diagnosis of Rolling Bearing Based on Fisher Discrimination Sparse Coding
    Li, Chengliang
    Wang, Zhongsheng
    Ding, Chan
    PROCEEDINGS OF THE FIRST SYMPOSIUM ON AVIATION MAINTENANCE AND MANAGEMENT-VOL II, 2014, 297 : 387 - 394
  • [28] Sparse representation-based classification for rolling bearing fault diagnosis
    Liu, Yicai
    Yu, Fajun
    Gao, Jun
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3058 - 3061
  • [29] A Novel Sparse Enhancement Neural Network for Rolling Bearing Fault Diagnosis
    Zhang, Yong
    Ye, Junjie
    Yang, Wenhu
    Shi, Jinwang
    He, Wangpeng
    Cai, Gaigai
    SHOCK AND VIBRATION, 2022, 2022
  • [30] Rolling Bearing Fault Diagnosis Based on CNN-LSTM with FFT and SVD
    Xu, Muzi
    Yu, Qianqian
    Chen, Shichao
    Lin, Jianhui
    INFORMATION, 2024, 15 (07)