Innovative mimetic discretizations for electromagnetic problems

被引:24
作者
Brezzi, Franco [1 ,2 ]
Buffa, Annalisa [1 ]
机构
[1] CNR, IMATI, I-27100 Pavia, Italy
[2] Univ Pavia, IUSS, I-27100 Pavia, Italy
关键词
Mimetic finite differences; Electromagnetics; FINITE-DIFFERENCE METHODS; POLYHEDRAL MESHES; DISCRETE COMPACTNESS; DIFFUSION-PROBLEMS; ELEMENTS;
D O I
10.1016/j.cam.2009.08.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a discretization methodology for Maxwell equations based on Mimetic Finite Differences (MFD). Following the lines of the recent advances in MFD techniques (see Brezzi et al. (2007) [14] and the references therein) and using some of the results of Brezzi and Buffa (2007) [12], we propose mimetic discretizations for several formulations of electromagnetic problems both at low and high frequency in the time-harmonic regime. The numerical analysis for some of the proposed discretizations has already been developed, whereas for others the convergence study is an object of ongoing research. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1980 / 1987
页数:8
相关论文
共 17 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
Bochev PB, 2006, IMA VOL MATH APPL, V142, P89
[4]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[5]   A note on the de Rham complex and a discrete compactness property [J].
Boffi, D .
APPLIED MATHEMATICS LETTERS, 2001, 14 (01) :33-38
[6]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[7]   WHITNEY FORMS - A CLASS OF FINITE-ELEMENTS FOR 3-DIMENSIONAL COMPUTATIONS IN ELECTROMAGNETISM [J].
BOSSAVIT, A .
IEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY, 1988, 135 (08) :493-500
[8]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[9]   A family of mimetic finite difference methods on polygonal and polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Simoncini, V .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (10) :1533-1551
[10]  
BREZZI F, 2007, SCALAR PRODUCT UNPUB