Spatial Transformer K-Means

被引:0
|
作者
Cosentino, Romain [1 ]
Balestriero, Randall [1 ]
Bahroun, Yanis [2 ]
Sengupta, Anirvan [3 ]
Baraniuk, Richard [1 ]
Aazhang, Behnaam [1 ]
机构
[1] Rice Univ, ECE, Houston, TX 77005 USA
[2] Flatiron Inst, CCM, CCN, New York, NY USA
[3] Flatiron Inst, CCM, CCQ, New York, NY USA
来源
2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2022年
关键词
Symmetry; K-means; Thin plate spline interpolation; Spatial transformer; QUANTIZATION;
D O I
10.1109/IEEECONF56349.2022.10064695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-means algorithm is one of the most employed centroid-based clustering algorithms. Unfortunately, it often requires intricate data embeddings for good performance, which comes at the cost of reduced theoretical guarantees and loss of interpretability. Instead, we propose to use the intrinsic data space and augment K-means with a similarity measure invariant to non-rigid transformations. This enables (i) the reduction of intrinsic nuisances associated with the data, making the clustering task simpler and improving performance, leading to state-of-the-art results, (ii) clustering in the input space of the data, providing a fully interpretable clustering algorithm, and (iii) the benefit of convergence guarantees.
引用
收藏
页码:1444 / 1448
页数:5
相关论文
共 50 条
  • [41] ROBUST k-MEANS CLUSTERING FOR DISTRIBUTIONS WITH TWO MOMENTS
    Klochkov, Yegor
    Kroshnin, Alexey
    Zhivotovskiy, Nikita
    ANNALS OF STATISTICS, 2021, 49 (04) : 2206 - 2230
  • [42] t-k-means: A ROBUST AND STABLE k-means VARIANT
    Li, Yiming
    Zhang, Yang
    Tang, Qingtao
    Huang, Weipeng
    Jiang, Yong
    Xia, Shu-Tao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3120 - 3124
  • [43] Improving Clustering Method Performance Using K-Means, Mini Batch K-Means, BIRCH and Spectral
    Wahyuningrum, Tenia
    Khomsah, Siti
    Suyanto, Suyanto
    Meliana, Selly
    Yunanto, Prasti Eko
    Al Maki, Wikky F.
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [44] Selective K-means Tree Search
    Tuan Anh Nguyen
    Matsui, Yusuke
    Yamasaki, Toshihiko
    Aizawa, Kiyoharu
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 875 - 878
  • [45] The global Minmax k-means algorithm
    Wang, Xiaoyan
    Bai, Yanping
    SPRINGERPLUS, 2016, 5
  • [46] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172
  • [47] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516
  • [48] Importance of Initialization in K-Means Clustering
    Gupta, Anubhav
    Tomer, Antriksh
    Dahiya, Sonika
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [49] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118
  • [50] Background Subtraction with Superpixel and k-means
    Chen, Yu-Qiu
    Sun, Zhan-Li
    Wang, Nan
    Bao, Xin-Yuan
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 108 - 112