Spatial Transformer K-Means

被引:0
|
作者
Cosentino, Romain [1 ]
Balestriero, Randall [1 ]
Bahroun, Yanis [2 ]
Sengupta, Anirvan [3 ]
Baraniuk, Richard [1 ]
Aazhang, Behnaam [1 ]
机构
[1] Rice Univ, ECE, Houston, TX 77005 USA
[2] Flatiron Inst, CCM, CCN, New York, NY USA
[3] Flatiron Inst, CCM, CCQ, New York, NY USA
来源
2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2022年
关键词
Symmetry; K-means; Thin plate spline interpolation; Spatial transformer; QUANTIZATION;
D O I
10.1109/IEEECONF56349.2022.10064695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-means algorithm is one of the most employed centroid-based clustering algorithms. Unfortunately, it often requires intricate data embeddings for good performance, which comes at the cost of reduced theoretical guarantees and loss of interpretability. Instead, we propose to use the intrinsic data space and augment K-means with a similarity measure invariant to non-rigid transformations. This enables (i) the reduction of intrinsic nuisances associated with the data, making the clustering task simpler and improving performance, leading to state-of-the-art results, (ii) clustering in the input space of the data, providing a fully interpretable clustering algorithm, and (iii) the benefit of convergence guarantees.
引用
收藏
页码:1444 / 1448
页数:5
相关论文
共 50 条
  • [31] Improving Bregman k-means
    Ashour, Wesam
    Fyfe, Colin
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (01) : 65 - 82
  • [32] Incremental k-Means Method
    Prasad, Rabinder Kumar
    Sarmah, Rosy
    Chakraborty, Subrata
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 38 - 46
  • [33] Comparative Study of K-Means, Pam and Rough K-Means Algorithms Using Cancer Datasets
    Kumar, Parvesh
    Wasan, Krishan
    COMPUTING, COMMUNICATION, AND CONTROL, 2011, 1 : 136 - 140
  • [34] Three-way k-means: integrating k-means and three-way decision
    Pingxin Wang
    Hong Shi
    Xibei Yang
    Jusheng Mi
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 2767 - 2777
  • [35] Wood Color Classification Based on Color Spatial Features and K-means Algorithm
    Lin, Ye
    Chen, Dan
    Liang, Shijia
    Qiu, Yang
    Xu, Zhezhuang
    Zhang, Jiahao
    Liu, Xinxiang
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3847 - 3851
  • [36] Apache Mahout's k-Means vs. Fuzzy k-Means Performance Evaluation
    Xhafa, Fatos
    Bogza, Adriana
    Caballe, Santi
    Barolli, Leonard
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS (INCOS), 2016, : 110 - 116
  • [37] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [38] Three-way k-means: integrating k-means and three-way decision
    Wang, Pingxin
    Shi, Hong
    Yang, Xibei
    Mi, Jusheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (10) : 2767 - 2777
  • [39] Recognition of Systematic Spatial Patterns in Silicon Wafers Based on SOM and K-means
    Liukkonen, Mika
    Hiltunen, Yrjo
    IFAC PAPERSONLINE, 2018, 51 (02): : 439 - 444
  • [40] On the quality of k-means clustering based on grouped data
    Kaeaerik, Meelis
    Paerna, Kalev
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (11) : 3836 - 3841