Spatial Transformer K-Means

被引:0
|
作者
Cosentino, Romain [1 ]
Balestriero, Randall [1 ]
Bahroun, Yanis [2 ]
Sengupta, Anirvan [3 ]
Baraniuk, Richard [1 ]
Aazhang, Behnaam [1 ]
机构
[1] Rice Univ, ECE, Houston, TX 77005 USA
[2] Flatiron Inst, CCM, CCN, New York, NY USA
[3] Flatiron Inst, CCM, CCQ, New York, NY USA
来源
2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2022年
关键词
Symmetry; K-means; Thin plate spline interpolation; Spatial transformer; QUANTIZATION;
D O I
10.1109/IEEECONF56349.2022.10064695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The K-means algorithm is one of the most employed centroid-based clustering algorithms. Unfortunately, it often requires intricate data embeddings for good performance, which comes at the cost of reduced theoretical guarantees and loss of interpretability. Instead, we propose to use the intrinsic data space and augment K-means with a similarity measure invariant to non-rigid transformations. This enables (i) the reduction of intrinsic nuisances associated with the data, making the clustering task simpler and improving performance, leading to state-of-the-art results, (ii) clustering in the input space of the data, providing a fully interpretable clustering algorithm, and (iii) the benefit of convergence guarantees.
引用
收藏
页码:1444 / 1448
页数:5
相关论文
共 50 条
  • [21] Sparse probabilistic K-means
    Jung, Yoon Mo
    Whang, Joyce Jiyoung
    Yun, Sangwoon
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 382
  • [22] Vectorized Implementation of K-means
    Otsuka, Tomoki
    Fukushima, Norishige
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY (IWAIT) 2021, 2021, 11766
  • [23] Adaptive Graph K-Means
    Pei, Shenfei
    Sun, Yuanchen
    Nie, Feiping
    Jiang, Xudong
    Zheng, Zengwei
    PATTERN RECOGNITION, 2025, 161
  • [24] Optimized Cartesian K-Means
    Wang, Jianfeng
    Wang, Jingdong
    Song, Jingkuan
    Xu, Xin-Shun
    Shen, Heng Tao
    Li, Shipeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (01) : 180 - 192
  • [25] Robust trimmed k-means
    Dorabiala, Olga
    Kutz, J. Nathan
    Aravkin, Aleksandr Y.
    PATTERN RECOGNITION LETTERS, 2022, 161 : 9 - 16
  • [26] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [27] K*-Means: An Effective and Efficient K-means Clustering Algorithm
    Qi, Jianpeng
    Yu, Yanwei
    Wang, Lihong
    Liu, Jinglei
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 242 - 249
  • [28] Sparse Subspace K-means
    Diallo, Abdoul Wahab
    Niang, Ndeye
    Ouattara, Mory
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 678 - 685
  • [29] Constrained K-Means Classification
    Smyrlis, Panagiotis N.
    Tsouros, Dimosthenis C.
    Tsipouras, Markos G.
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2018, 8 (04) : 3203 - 3208
  • [30] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023