The complete chloroplast genome sequence of Salix kochiana Trautv. and its phylogenetic analysis

被引:3
作者
Wang, Jing [1 ,2 ]
Yu, Zicheng [1 ,2 ]
Yao, Xu [1 ,2 ]
Wan, Jie [1 ,2 ]
Wang, Zhengxuan [1 ,2 ]
Li, Xiaoping [1 ,2 ,3 ]
机构
[1] Nanjing Forestry Univ, Collaborat Innovat Ctr Southern Modern Forestry, Nanjing, Peoples R China
[2] Nanjing Forestry Univ, Coll Forestry, Nanjing 210037, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Key Lab Poplar Germplasm Innovat & Variet, Nanjing, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2022年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
Chloroplast genome; phylogenetic analysis; Salix kochiana Trautv; Salicaceae; SALICACEAE;
D O I
10.1080/23802359.2022.2087555
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Salix kochiana Trautvetter 1837 is one of the highest value shrubs present in northern China with important economic and ecological benefits. This study revealed the structural characteristics and phylogenetic relationships of chloroplast genes in S. kochiana Trautv. The results showed that the length of the complete chloroplast genome was 155,657 bp, which was a typical circular double-stranded structure, including an 84,458 bp large single-copy region (LSC), a 16,221 bp small single-copy region (SSC) and a 27,489 bp pair of inverted repeat regions (IRA and IRB). The chloroplast genome contains 48,757 A bases, 28,017 G bases, 49,843 T bases, and 29,040 C bases, with a GC content of 36.66%. Through bioinformatics annotation, a total of 126 genes were found in the chloroplast genome, including 81 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that S. kochiana Trautv. was closely related to S. triandroides.
引用
收藏
页码:1123 / 1125
页数:3
相关论文
共 15 条
  • [1] The sucrose transporter gene family in rice
    Aoki, N
    Hirose, T
    Scofield, GN
    Whitfeld, PR
    Furbank, RT
    [J]. PLANT AND CELL PHYSIOLOGY, 2003, 44 (03) : 223 - 232
  • [2] Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications
    Chen, Jia-Hui
    Sun, Hang
    Wen, Jun
    Yang, Yong-Ping
    [J]. TAXON, 2010, 59 (01) : 29 - 37
  • [3] fastp: an ultra-fast all-in-one FASTQ preprocessor
    Chen, Shifu
    Zhou, Yanqing
    Chen, Yaru
    Gu, Jia
    [J]. BIOINFORMATICS, 2018, 34 (17) : 884 - 890
  • [4] Analyzing and Characterizing the Chloroplast Genome of Salix wilsonii
    Chen, Yingnan
    Hu, Nan
    Wu, Huaitong
    [J]. BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [5] NOVOPlasty: de novo assembly of organelle genomes from whole genome data
    Dierckxsens, Nicolas
    Mardulyn, Patrick
    Smits, Guillaume
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (04)
  • [6] MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability
    Katoh, Kazutaka
    Standley, Daron M.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2013, 30 (04) : 772 - 780
  • [7] Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
    Kearse, Matthew
    Moir, Richard
    Wilson, Amy
    Stones-Havas, Steven
    Cheung, Matthew
    Sturrock, Shane
    Buxton, Simon
    Cooper, Alex
    Markowitz, Sidney
    Duran, Chris
    Thierer, Tobias
    Ashton, Bruce
    Meintjes, Peter
    Drummond, Alexei
    [J]. BIOINFORMATICS, 2012, 28 (12) : 1647 - 1649
  • [8] Niu YF., 2020, STUDY EC FOREST, V38, P62
  • [9] PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes
    Qu, Xiao-Jian
    Moore, Michael J.
    Li, De-Zhu
    Yi, Ting-Shuang
    [J]. PLANT METHODS, 2019, 15 (1)
  • [10] Characterization of the complete chloroplast genome of Salix linearistipularis (Franch.) Hao 1936
    Ren, Rongrong
    Li, Xiaoping
    [J]. MITOCHONDRIAL DNA PART B-RESOURCES, 2021, 6 (09): : 2764 - 2766