Approximation of variational eigenvalue problems

被引:21
作者
Solov'ev, S. I. [1 ]
机构
[1] Kazan VI Lenin State Univ, Kazan 420008, Russia
关键词
Hilbert Space; Eigenvalue Problem; Bilinear Form; Spectral Problem; Subspace Versus;
D O I
10.1134/S0012266110070104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A variational eigenvalue problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We analyze the convergence and accuracy of the approximate solutions. The general results are illustrated by a scheme of the finite element method with numerical integration for a one-dimensional second-order differential eigenvalue problem. For this approximation, we obtain optimal estimates for the accuracy of the approximate solutions.
引用
收藏
页码:1030 / 1041
页数:12
相关论文
共 19 条
  • [1] [Anonymous], 1972, Mathematical Foundations of the Finite Element Method
  • [2] [Anonymous], 1967, Z. Vycisl. Mat. i Mat. Fiz.
  • [3] [Anonymous], PRIBLIZHENNOE RESHEN
  • [4] BANERJEE U, 1990, NUMER MATH, V56, P735, DOI 10.1007/BF01405286
  • [5] Ciarlet P., 1977, FINITE ELEMENT METHO
  • [6] Mikhailov V.P., 1983, DIFFERENTSIALNYE URA
  • [7] Mikhlin S.G., 1977, Linear Partial Differential Equations
  • [8] Solov'ev S.I., 2006, UCH ZAPISKI KAZAN GO, V148, P51
  • [9] Solov'ev S.I., 1992, ZH VYCH MAT MAT FIZ, V32, P675
  • [10] Solov'ev S.I, 2002, DIFF URAVN, V38, P710