Multisynchronization for Coupled Multistable Fractional-Order Neural Networks via Impulsive Control

被引:7
作者
Zhang, Jin-E [1 ]
机构
[1] Hubei Normal Univ, Huangshi 435002, Hubei, Peoples R China
关键词
GENERALIZED MULTI-SYNCHRONIZATION; STABILITY ANALYSIS; CONSENSUS; SYSTEMS;
D O I
10.1155/2017/9323172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every subnetwork of a class of coupled fractional-order neural networks consisting of N identical subnetworks can have (r + 1)(n) locally Mittag-Leffler stable equilibria. In addition, we give some algebraic criteria for ascertaining the static multisynchronization of coupled fractional-order neural networks with fixed and switching topologies, respectively. The obtained theoretical results characterize multisynchronization feature for multistable control systems. Two numerical examples are given to verify the superiority of the proposed results.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control [J].
Liu, Heng ;
Pan, Yongping ;
Li, Shenggang ;
Chen, Ye .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (07) :1219-1232
[22]   Cluster synchronization of fractional-order coupled genetic regulatory networks via pinning control [J].
Yu, Juan ;
Yao, Rui ;
Hu, Cheng .
NEUROCOMPUTING, 2024, 607
[23]   Exponential synchronization of fractional-order multilayer coupled neural networks with reaction-diffusion terms via intermittent control [J].
Xu, Yao ;
Sun, Fu ;
Li, Wenxue .
NEURAL COMPUTING & APPLICATIONS, 2021, 33 (23) :16019-16032
[24]   Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality [J].
Shafiya, M. ;
Nagamani, G. ;
Dafik, D. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 191 :168-186
[25]   Bipartite leaderless synchronization of fractional-order coupled neural networks via edge-based adaptive pinning control [J].
Sun, Yu ;
Hu, Cheng ;
Yu, Juan .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (03) :1303-1317
[26]   Synchronization of fractional-order memristive recurrent neural networks via aperiodically intermittent control [J].
Zhang, Shuai ;
Yang, Yongqing ;
Sui, Xin ;
Zhang, Yanna .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (11) :11717-11734
[27]   Synchronization of Fractional-order Neural Networks via Intermittent Quantized Control: Optimal Algorithm [J].
Jing, Taiyan ;
He, Tongyang .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (07)
[28]   Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control [J].
Xi, Yangui ;
Yu, Yongguang ;
Zhang, Shuo ;
Hai, Xudong .
CHINESE PHYSICS B, 2018, 27 (01)
[29]   Finite-time H∞ control of uncertain fractional-order neural networks [J].
Thuan, Mai Viet ;
Sau, Nguyen Huu ;
Huyen, Nguyen Thi Thanh .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
[30]   Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects [J].
Li, Hong-Li ;
Kao, Yonggui ;
Hu, Cheng ;
Jiang, Haijun ;
Jiang, Yao-Lin .
CHAOS SOLITONS & FRACTALS, 2021, 143