The Hippo signal transduction network for exercise physiologists

被引:38
作者
Gabriel, Brendan M. [1 ,7 ,8 ]
Hamilton, D. Lee [2 ]
Tremblay, Annie M. [3 ,4 ,5 ]
Wackerhage, Henning [1 ,6 ]
机构
[1] Univ Aberdeen, Sch Med Dent & Nutr, Aberdeen AB9 1FX, Scotland
[2] Univ Stirling, Sch Sport, Stirling FK9 4LA, Scotland
[3] Childrens Hosp, Stem Cell Program, 300 Longwood Ave, Boston, MA 02115 USA
[4] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[5] Harvard Stem Cell Inst, Cambridge, MA USA
[6] Tech Univ Munich, Fac Sport & Hlth Sci, Uptown Munchen Campus D,Georg Brauchle Ring 60-62, D-80992 Munich, Germany
[7] Univ Copenhagen, Novo Nordisk Fdn, Ctr Basic Metab Res, Sect Integrat Physiol, DK-1168 Copenhagen, Denmark
[8] Karolinska Inst, Dept Physiol & Pharmacol, Integrat Physiol, Stockholm, Sweden
基金
英国医学研究理事会; 加拿大健康研究院;
关键词
exercise; Hippo; hypertrophy; skeletal muscle; Yap; YES-ASSOCIATED PROTEIN; HYPOXIA-INDUCIBLE FACTOR; AMPK-MEDIATED REGULATION; GENOME-WIDE ASSOCIATION; SKELETAL-MUSCLE MASS; PATHWAY EFFECTOR YAP; CARDIAC STEM-CELLS; TGF-BETA; SATELLITE CELL; ORGAN SIZE;
D O I
10.1152/japplphysiol.01076.2015
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene symbol Wwtr1) regulate gene expression mainly by coactivating the Tead transcription factors. Being at the center of the Hippo signaling network, Yap and Taz are regulated by the Hippo kinase cassette and additionally by a plethora of exercise-associated signals and signaling modules. These include mechanotransduction, the AKT-mTORC1 network, the SMAD transcription factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and angiotensin II through G protein-coupled receptors, and IL-6. Consequently, exercise should alter Hippo signaling in several organs to mediate at least some aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overexpression in muscle fibers has been shown to promote a fast-to-slow fiber type switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, genome-wide association studies in humans have linked the Hippo pathway members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height, which is a key factor in sports.
引用
收藏
页码:1105 / 1117
页数:13
相关论文
共 166 条
[1]   Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy [J].
Abel, E. Dale ;
Doenst, Torsten .
CARDIOVASCULAR RESEARCH, 2011, 90 (02) :234-242
[2]   Role of Muscle Stem Cells During Skeletal Regeneration [J].
Abou-Khalil, Rana ;
Yang, Frank ;
Lieu, Shirley ;
Julien, Anais ;
Perry, Jaselle ;
Pereira, Catia ;
Relaix, Frederic ;
Miclau, Theodore ;
Marcucio, Ralph ;
Colnot, Celine .
STEM CELLS, 2015, 33 (05) :1501-1511
[3]   Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-β Pathways [J].
Alarcon, Claudio ;
Zaromytidou, Alexia-Ileana ;
Xi, Qiaoran ;
Gao, Sheng ;
Yu, Jianzhong ;
Fujisawa, Sho ;
Barlas, Afsar ;
Miller, Alexandria N. ;
Manova-Todorova, Katia ;
Macias, Maria J. ;
Sapkota, Gopal ;
Pan, Duojia ;
Massague, Joan .
CELL, 2009, 139 (04) :757-769
[4]   CD34 Promotes Satellite Cell Motility and Entry into Proliferation to Facilitate Efficient Skeletal Muscle Regeneration [J].
Alfaro, Leslie Ann So ;
Dick, Sarah A. ;
Siegel, Ashley L. ;
Anonuevo, Adam S. ;
McNagny, Kelly M. ;
Megeney, Lynn A. ;
Cornelison, D. D. W. ;
Rossi, Fabio M. V. .
STEM CELLS, 2011, 29 (12) :2030-2041
[5]   Hundreds of variants clustered in genomic loci and biological pathways affect human height [J].
Allen, Hana Lango ;
Estrada, Karol ;
Lettre, Guillaume ;
Berndt, Sonja I. ;
Weedon, Michael N. ;
Rivadeneira, Fernando ;
Willer, Cristen J. ;
Jackson, Anne U. ;
Vedantam, Sailaja ;
Raychaudhuri, Soumya ;
Ferreira, Teresa ;
Wood, Andrew R. ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Speliotes, Elizabeth K. ;
Wheeler, Eleanor ;
Soranzo, Nicole ;
Park, Ju-Hyun ;
Yang, Jian ;
Gudbjartsson, Daniel ;
Heard-Costa, Nancy L. ;
Randall, Joshua C. ;
Qi, Lu ;
Smith, Albert Vernon ;
Maegi, Reedik ;
Pastinen, Tomi ;
Liang, Liming ;
Heid, Iris M. ;
Luan, Jian'an ;
Thorleifsson, Gudmar ;
Winkler, Thomas W. ;
Goddard, Michael E. ;
Lo, Ken Sin ;
Palmer, Cameron ;
Workalemahu, Tsegaselassie ;
Aulchenko, Yurii S. ;
Johansson, Asa ;
Zillikens, M. Carola ;
Feitosa, Mary F. ;
Esko, Tonu ;
Johnson, Toby ;
Ketkar, Shamika ;
Kraft, Peter ;
Mangino, Massimo ;
Prokopenko, Inga ;
Absher, Devin ;
Albrecht, Eva ;
Ernst, Florian ;
Glazer, Nicole L. ;
Hayward, Caroline .
NATURE, 2010, 467 (7317) :832-838
[6]   Physiological activation of hypoxia inducible factor-1 in human skeletal muscle [J].
Ameln, H ;
Gustafsson, T ;
Sundberg, CJ ;
Okamoto, K ;
Jansson, E ;
Poellinger, L ;
Makino, Y .
FASEB JOURNAL, 2005, 19 (06) :1009-+
[7]   Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain [J].
Anbanandam, Asokan ;
Albarado, Diana C. ;
Nguyen, Catherine T. ;
Halder, Georg ;
Gao, Xiaolian ;
Veeraraghavan, Sudha .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (46) :17225-17230
[8]   Structural Basis for the Versatile Interactions of Smad7 with Regulator WW Domains in TGF-β Pathways [J].
Aragon, Eric ;
Goerner, Nina ;
Xi, Qiaoran ;
Gomes, Tiago ;
Gao, Sheng ;
Massague, Joan ;
Macias, Maria J. .
STRUCTURE, 2012, 20 (10) :1726-1736
[9]   A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors [J].
Aragona, Mariaceleste ;
Panciera, Tito ;
Manfrin, Andrea ;
Giulitti, Stefano ;
Michielin, Federica ;
Elvassore, Nicola ;
Dupont, Sirio ;
Piccolo, Stefano .
CELL, 2013, 154 (05) :1047-1059
[10]  
Arstila M, 1966, J Sports Med Phys Fitness, V6, P166