Reconstruction and evolutionary history of eutherian chromosomes

被引:82
作者
Kim, Jaebum [1 ]
Farre, Marta [2 ]
Auvil, Loretta [3 ]
Capitanu, Boris [3 ]
Larkin, Denis M. [2 ]
Ma, Jian [4 ]
Lewin, Harris A. [5 ]
机构
[1] Konkuk Univ, Dept Biomed Sci & Engn, Seoul 05029, South Korea
[2] Univ London, Royal Vet Coll, Comparat Biomed Sci Dept, London NW1 0TU, England
[3] Univ Illinois, Illinois Informat Inst, Urbana, IL 61801 USA
[4] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
[5] Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
chromosome evolution; ancestral genome reconstruction; genome rearrangements; HUMAN GENOME; PRIMATE CHROMOSOMES; ANCESTRAL GENOME; SEQUENCE; REARRANGEMENTS; REGIONS; MAPS; ORGANIZATION; ANNOTATION; KARYOTYPE;
D O I
10.1073/pnas.1702012114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over similar to 105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first similar to 60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.
引用
收藏
页码:E5379 / E5388
页数:10
相关论文
共 47 条
[11]   Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? [J].
Froenicke, L ;
Caldés, MG ;
Graphodatsky, A ;
Müller, S ;
Lyons, LA ;
Robinson, TJ ;
Volleth, M ;
Yang, FT ;
Wienberg, J .
GENOME RESEARCH, 2006, 16 (03) :306-310
[12]   Origins of primate chromosomes - as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences [J].
Froenicke, L .
CYTOGENETIC AND GENOME RESEARCH, 2005, 108 (1-3) :122-138
[13]   Towards the delineation of the ancestral eutherian genome organization:: comparative genome maps of human and the African elephant (Loxodonta africana) generated by chromosome painting [J].
Frönicke, L ;
Wienberg, J ;
Stone, G ;
Adams, L ;
Stanyon, R .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2003, 270 (1522) :1331-1340
[14]   Analyses of pig genomes provide insight into porcine demography and evolution [J].
Groenen, Martien A. M. ;
Archibald, Alan L. ;
Uenishi, Hirohide ;
Tuggle, Christopher K. ;
Takeuchi, Yasuhiro ;
Rothschild, Max F. ;
Rogel-Gaillard, Claire ;
Park, Chankyu ;
Milan, Denis ;
Megens, Hendrik-Jan ;
Li, Shengting ;
Larkin, Denis M. ;
Kim, Heebal ;
Frantz, Laurent A. F. ;
Caccamo, Mario ;
Ahn, Hyeonju ;
Aken, Bronwen L. ;
Anselmo, Anna ;
Anthon, Christian ;
Auvil, Loretta ;
Badaoui, Bouabid ;
Beattie, Craig W. ;
Bendixen, Christian ;
Berman, Daniel ;
Blecha, Frank ;
Blomberg, Jonas ;
Bolund, Lars ;
Bosse, Mirte ;
Botti, Sara ;
Zhan Bujie ;
Bystrom, Megan ;
Capitanu, Boris ;
Carvalho-Silva, Denise ;
Chardon, Patrick ;
Chen, Celine ;
Cheng, Ryan ;
Choi, Sang-Haeng ;
Chow, William ;
Clark, Richard C. ;
Clee, Christopher ;
Crooijmans, Richard P. M. A. ;
Dawson, Harry D. ;
Dehais, Patrice ;
De Sapio, Fioravante ;
Dibbits, Bert ;
Drou, Nizar ;
Du, Zhi-Qiang ;
Eversole, Kellye ;
Fadista, Joao ;
Fairley, Susan .
NATURE, 2012, 491 (7424) :393-398
[15]   The impact of chromosomal rearrangements on regulation of gene expression [J].
Harewood, Louise ;
Fraser, Peter .
HUMAN MOLECULAR GENETICS, 2014, 23 :R76-R82
[16]  
Harris R. S., 2007, THESIS, DOI DOI 10.5555/1414852
[17]   Ecological adaptation determines functional mammalian olfactory subgenomes [J].
Hayden, Sara ;
Bekaert, Michael ;
Crider, Tess A. ;
Mariani, Stefano ;
Murphy, William J. ;
Teeling, Emma C. .
GENOME RESEARCH, 2010, 20 (01) :1-9
[18]   Reconstructing complex regions of genomes using long-read sequencing technology [J].
Huddleston, John ;
Ranade, Swati ;
Malig, Maika ;
Antonacci, Francesca ;
Chaisson, Mark ;
Hon, Lawrence ;
Sudmant, Peter H. ;
Graves, Tina A. ;
Alkan, Can ;
Dennis, Megan Y. ;
Wilson, Richard K. ;
Turner, Stephen W. ;
Korlach, Jonas ;
Eichler, Evan E. .
GENOME RESEARCH, 2014, 24 (04) :688-696
[19]   ANGES: reconstructing ANcestral GEnomeS maps [J].
Jones, Bradley R. ;
Rajaraman, Ashok ;
Tannier, Eric ;
Chauve, Cedric .
BIOINFORMATICS, 2012, 28 (18) :2388-2390
[20]   The human genome browser at UCSC [J].
Kent, WJ ;
Sugnet, CW ;
Furey, TS ;
Roskin, KM ;
Pringle, TH ;
Zahler, AM ;
Haussler, D .
GENOME RESEARCH, 2002, 12 (06) :996-1006