Reconstruction and evolutionary history of eutherian chromosomes

被引:82
作者
Kim, Jaebum [1 ]
Farre, Marta [2 ]
Auvil, Loretta [3 ]
Capitanu, Boris [3 ]
Larkin, Denis M. [2 ]
Ma, Jian [4 ]
Lewin, Harris A. [5 ]
机构
[1] Konkuk Univ, Dept Biomed Sci & Engn, Seoul 05029, South Korea
[2] Univ London, Royal Vet Coll, Comparat Biomed Sci Dept, London NW1 0TU, England
[3] Univ Illinois, Illinois Informat Inst, Urbana, IL 61801 USA
[4] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
[5] Univ Calif Davis, Dept Evolut & Ecol, Davis, CA 95616 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
chromosome evolution; ancestral genome reconstruction; genome rearrangements; HUMAN GENOME; PRIMATE CHROMOSOMES; ANCESTRAL GENOME; SEQUENCE; REARRANGEMENTS; REGIONS; MAPS; ORGANIZATION; ANNOTATION; KARYOTYPE;
D O I
10.1073/pnas.1702012114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over similar to 105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first similar to 60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.
引用
收藏
页码:E5379 / E5388
页数:10
相关论文
共 47 条
[1]   Breakpoint graphs and ancestral genome reconstructions [J].
Alekseyev, Max A. ;
Pevzner, Pavel A. .
GENOME RESEARCH, 2009, 19 (05) :943-957
[2]   The 3D Organization of Chromatin Explains Evolutionary Fragile Genomic Regions [J].
Berthelot, Camille ;
Muffato, Matthieu ;
Abecassis, Judith ;
Roest Crollius, Hugues .
CELL REPORTS, 2015, 10 (11) :1913-1924
[3]  
Bourque G, 2002, GENOME RES, V12, P26
[4]   Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set [J].
Damas, Joana ;
O'Connor, Rebecca ;
Farre, Marta ;
Lenis, Vasileios Panagiotis E. ;
Martell, Henry J. ;
Mandawala, Anjali ;
Fowler, Katie ;
Joseph, Sunitha ;
Swain, Martin T. ;
Griffin, Darren K. ;
Larkin, Denis M. .
GENOME RESEARCH, 2017, 27 (05) :875-884
[5]  
Duffy David J., 2011, Communicative & Integrative Biology, V4, P59, DOI 10.4161/cib.4.1.13712
[6]   The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution [J].
Elsik, Christine G. ;
Tellam, Ross L. ;
Worley, Kim C. ;
Gibbs, Richard A. ;
Abatepaulo, Antonio R. R. ;
Abbey, Colette A. ;
Adelson, David L. ;
Aerts, Jan ;
Ahola, Virpi ;
Alexander, Lee ;
Alioto, Tyler ;
Almeida, Iassudara G. ;
Amadio, Ariel F. ;
Anatriello, Elen ;
Antonarakis, Stylianos E. ;
Anzola, Juan M. ;
Astashyn, Alex ;
Bahadue, Suria M. ;
Baldwin, Cynthia L. ;
Barris, Wes ;
Baxter, Rebecca ;
Bell, Stephanie Nicole ;
Bennett, Anna K. ;
Bennett, Gary L. ;
Biase, Fernando H. ;
Boldt, Clayton R. ;
Bradley, Daniel G. ;
Brinkman, Fiona S. L. ;
Brinkmeyer-Langford, Candice L. ;
Brown, Wendy C. ;
Brownstein, Michael J. ;
Buhay, Christian ;
Caetano, Alexandre R. ;
Camara, Francisco ;
Carroll, Jeffrey A. ;
Carvalho, Wanessa A. ;
Casey, Theresa ;
Cervelatti, Elaine P. ;
Chack, Joseph ;
Chacko, Elsa ;
Chandrabose, Mimi M. ;
Chapin, Jennifer E. ;
Chapple, Charles E. ;
Chen, Hsiu-Chuan ;
Chen, Lin ;
Cheng, Ye ;
Cheng, Ze ;
Childers, Christopher P. ;
Chitko-McKown, Carol G. ;
Chiu, Readman .
SCIENCE, 2009, 324 (5926) :522-528
[7]   Adaptive Evolution in Zinc Finger Transcription Factors [J].
Emerson, Ryan O. ;
Thomas, James H. .
PLOS GENETICS, 2009, 5 (01)
[8]   Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles [J].
Farre, Marta ;
Narayan, Jitendra ;
Slavov, Gancho T. ;
Damas, Joana ;
Auvil, Loretta ;
Li, Cai ;
Jarvis, Erich D. ;
Burt, David W. ;
Griffin, Darren K. ;
Larkin, Denis M. .
GENOME BIOLOGY AND EVOLUTION, 2016, 8 (08) :2442-2451
[9]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[10]   Mammalian karyotype evolution [J].
Ferguson-Smith, Malcolm A. ;
Trifonov, Vladimir .
NATURE REVIEWS GENETICS, 2007, 8 (12) :950-962