Lacunary statistical boundedness of order β for sequences of fuzzy numbers

被引:7
作者
Altinok, Hifsi [1 ]
Et, Mikail [1 ]
Altin, Yavuz [1 ]
机构
[1] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
关键词
QUOTIENT SPACE; CONVERGENCE; HEMIRINGS;
D O I
10.3233/JIFS-17940
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the present paper, we introduce the concept of lacunary statistical boundedness of order beta for sequences of fuzzy numbers and give some relations between lacunary statistical boundedness of order beta and statistical boundedness.
引用
收藏
页码:2383 / 2390
页数:8
相关论文
共 38 条
[1]   Compactness in fuzzy minimal spaces [J].
Alimohammady, A ;
Roohi, M .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :906-912
[2]  
Altinok H, 2012, IRAN J FUZZY SYST, V9, P63
[3]   Δ-STATISTICAL BOUNDEDNESS FOR SEQUENCES OF FUZZY NUMBERS [J].
Altinok, H. ;
Mursaleen, M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05) :2081-2093
[4]   Lacunary statistical convergence of order β in difference sequences of fuzzy numbers [J].
Altinok, Hifsi ;
Yagdiran, Damla .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (01) :227-235
[5]  
Altinok H, 2015, SOFT COMPUT, V19, P2095, DOI 10.1007/s00500-015-1660-2
[6]   Statistical limit inferior and limit superior for sequences of fuzzy numbers [J].
Aytar, S ;
Mammadov, MA ;
Pehlivan, S .
FUZZY SETS AND SYSTEMS, 2006, 157 (07) :976-985
[7]   Statistically monotonic and statistically bounded sequences of fuzzy numbers [J].
Aytar, S ;
Pehlivan, S .
INFORMATION SCIENCES, 2006, 176 (06) :734-744
[8]   On lacunary statistical boundedness [J].
Bhardwaj, Vinod K. ;
Gupta, Sandeep ;
Mohiuddine, Syed A. ;
Kilicman, Adem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[9]   Theory of fuzzy limits [J].
Burgin, M .
FUZZY SETS AND SYSTEMS, 2000, 115 (03) :433-443
[10]  
Colak R., 2010, MODERN METHODS ANAL, P121