DRGCN: Dual Residual Graph Convolutional Network for Hyperspectral Image Classification

被引:12
|
作者
Chen, Rong [1 ]
Li, Guanghui [1 ]
Dai, Chenglong [1 ]
机构
[1] Jiangnan Univ, Sch Artificial Intelligence & Comp Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Principal component analysis; Hyperspectral imaging; Degradation; Data mining; Convolutional neural networks; Graph convolutional network (GCN); graph representation; hyperspectral image (HSI) classification; residual learning;
D O I
10.1109/LGRS.2022.3171536
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, graph convolutional network (GCN) has drawn increasing attention in hyperspectral image (HSI) classification, as it can process arbitrary non-Euclidean data. However, dynamic GCN that refines the graph heavily relies on the graph embedding in the previous layer, which will result in performance degradation when the embedding contains noise. In this letter, we propose a novel dual residual graph convolutional network (DRGCN) for HSI classification that integrates two adjacency matrices of dual GCN. In detail, one GCN applies a soft adjacency matrix to extract spatial features, whereas the other utilizes the dynamic adjacency matrix to extract global context-aware features. Subsequently, the features extracted by dual GCN are fused to make full use of the complementary and correlated information among two graph representations. Moreover, we introduce residual learning to optimize graph convolutional layers during the training process, to alleviate the over-smoothing problem. The advantage of dual GCN is that it can extract robust and discriminative features from HSIs. Extensive experiments on four HSI datasets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the effectiveness and superiority of our proposed DRGCN, even with small-sized training data.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Graph Convolutional Enhanced Discriminative Broad Learning System for Hyperspectral Image Classification
    Tuya
    IEEE ACCESS, 2022, 10 : 90299 - 90311
  • [22] Hyperspectral Image Classification With Context-Aware Dynamic Graph Convolutional Network
    Wan, Sheng
    Gong, Chen
    Zhong, Ping
    Pan, Shirui
    Li, Guangyu
    Yang, Jian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 597 - 612
  • [23] Dual-Branch Difference Amplification Graph Convolutional Network for Hyperspectral Image Change Detection
    Qu, Jiahui
    Xu, Yunshuang
    Dong, Wenqian
    Li, Yunsong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] Cascade Residual Capsule Network for Hyperspectral Image Classification
    Mei, Zhiming
    Yin, Zengshan
    Kong, Xinwei
    Wang, Long
    Ren, Han
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3089 - 3106
  • [25] Multiscale Residual Network With Mixed Depthwise Convolution for Hyperspectral Image Classification
    Gao, Hongmin
    Yang, Yao
    Li, Chenming
    Gao, Lianru
    Zhang, Bing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (04): : 3396 - 3408
  • [26] Graph Convolutional Network With Relaxed Collaborative Representation for Hyperspectral Image Classification
    Zheng, Hengyi
    Su, Hongjun
    Wu, Zhaoyue
    Paoletti, Mercedes E.
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] Dual Graph U-Nets for Hyperspectral Image Classification
    Guo, Fangming
    Li, Zhongwei
    Xin, Ziqi
    Zhu, Xue
    Wang, Leiquan
    Zhang, Jie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8160 - 8170
  • [28] A Novel Cubic Convolutional Neural Network for Hyperspectral Image Classification
    Wang, Jinwei
    Song, Xiangbo
    Sun, Le
    Huang, Wei
    Wang, Jin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4133 - 4148
  • [29] A Dual-Branch Multiscale Transformer Network for Hyperspectral Image Classification
    Shi, Cuiping
    Yue, Shuheng
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20
  • [30] Automatic Graph Learning Convolutional Networks for Hyperspectral Image Classification
    Chen, Jie
    Jiao, Licheng
    Liu, Xu
    Li, Lingling
    Liu, Fang
    Yang, Shuyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60