Axiomatic Gi-vertex algebras

被引:44
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
G(1)-vertex algbra; weak associativity; module; compatibility; G(1)-vertex operator; OPERATOR-ALGEBRAS; VERTEX OPERATORS;
D O I
10.1142/S0219199703000987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by Borcherds' work on "G-vertex algebras," we formulate and study an axiomatic counterpart of Borcherds' notion of G-vertex algebra for the simplest nontrivial elementary vertex group, which we denote by G(1). Specifically, we formulate a notion of axiomatic G(1)-vertex algebra, prove certain basic properties and give certain examples, where the notion of axiomatic G(1)-vertex algebra is a nonlocal generalization of the notion of vertex-algebra. We also show how to construct axiomatic G(1)-vertex algebras from a set of compatible G(1)-vertex operators.
引用
收藏
页码:281 / 327
页数:47
相关论文
共 50 条
[41]   Symmetric invariant bilinear forms on modular vertex algebras [J].
Li, Haisheng ;
Mu, Qiang .
JOURNAL OF ALGEBRA, 2018, 513 :435-465
[42]   Groups of Lie Type, Vertex Algebras, and Modular Moonshine [J].
Griess, Robert L., Jr. ;
Lam, Ching Hung .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) :10716-10755
[43]   Quantum Kac-Moody Algebras and Vertex Representations [J].
Jing N. .
Letters in Mathematical Physics, 1998, 44 (4) :261-271
[44]   Extended affine Lie algebras, vertex algebras and equivariant φ-coordinated quasi-modules [J].
Chen, Fulin ;
Tan, Shaobin ;
Yu, Nina .
ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (01) :347-400
[45]   φ-Coordinated Quasi-Modules for Quantum Vertex Algebras [J].
Li, Haisheng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (03) :703-741
[46]   Smash product construction of modular lattice vertex algebras [J].
Mu, Qiang .
ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01) :204-220
[47]   Braided Tensor Categories Related to Bp Vertex Algebras [J].
Auger, Jean ;
Creutzig, Thomas ;
Kanade, Shashank ;
Rupert, Matthew .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) :219-260
[48]   Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02) :261-315
[49]   Quantum Kac-Moody algebras and vertex representations [J].
Jing, NH .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (04) :261-271
[50]   Weyl vertex algebras over fields of prime characteristic [J].
Wang, Yue ;
Mu, Qiang .
JOURNAL OF ALGEBRA, 2025, 681 :652-671