Axiomatic Gi-vertex algebras

被引:44
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
G(1)-vertex algbra; weak associativity; module; compatibility; G(1)-vertex operator; OPERATOR-ALGEBRAS; VERTEX OPERATORS;
D O I
10.1142/S0219199703000987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by Borcherds' work on "G-vertex algebras," we formulate and study an axiomatic counterpart of Borcherds' notion of G-vertex algebra for the simplest nontrivial elementary vertex group, which we denote by G(1). Specifically, we formulate a notion of axiomatic G(1)-vertex algebra, prove certain basic properties and give certain examples, where the notion of axiomatic G(1)-vertex algebra is a nonlocal generalization of the notion of vertex-algebra. We also show how to construct axiomatic G(1)-vertex algebras from a set of compatible G(1)-vertex operators.
引用
收藏
页码:281 / 327
页数:47
相关论文
共 50 条
[31]   A generalization of twisted modules over vertex algebras [J].
Tanabe, Kenichiro .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) :1109-1146
[32]   Vertex F-algebras and their φ-coordinated modules [J].
Li, Haisheng .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (07) :1645-1662
[33]   Orbifold theory for vertex algebras and Galois correspondence [J].
Dong, Chongying ;
Ren, Li ;
Yang, Chao .
JOURNAL OF ALGEBRA, 2024, 647 :144-171
[34]   Admissible representations of simple affine vertex algebras [J].
Futorny, Vyacheslav ;
Morales, Oscar ;
Krizka, Libor .
JOURNAL OF ALGEBRA, 2023, 628 :22-70
[35]   Twisted φ-coordinated modules for nonlocal vertex algebras [J].
Li, Haisheng ;
Tan, Shaobin ;
Wang, Bin .
JOURNAL OF ALGEBRA, 2019, 533 :283-321
[36]   Simple toroidal vertex algebras and their irreducible modules [J].
Kong, Fei ;
Li, Haisheng ;
Tan, Shaobin ;
Wang, Qing .
JOURNAL OF ALGEBRA, 2015, 440 :264-316
[37]   EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS [J].
Chen, Fulin ;
Li, Haisheng ;
Tan, Shaobin ;
Wang, Qing .
REPRESENTATION THEORY, 2025, 29 :60-107
[38]   The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1 [J].
Adamovic, Drazen ;
Perse, Ozren .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[39]   GROUPS OF LIE TYPE, VERTEX ALGEBRAS, AND MODULAR MOONSHINE [J].
Griess, Robert L., Jr. ;
Lam, Ching Hung .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 :167-176
[40]   Lattice construction of logarithmic modules for certain vertex algebras [J].
Adamovic, Drazen ;
Milas, Antun .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :535-561