Axiomatic Gi-vertex algebras

被引:43
|
作者
Li, HS [1 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Dept Math, Harbin, Peoples R China
关键词
G(1)-vertex algbra; weak associativity; module; compatibility; G(1)-vertex operator; OPERATOR-ALGEBRAS; VERTEX OPERATORS;
D O I
10.1142/S0219199703000987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by Borcherds' work on "G-vertex algebras," we formulate and study an axiomatic counterpart of Borcherds' notion of G-vertex algebra for the simplest nontrivial elementary vertex group, which we denote by G(1). Specifically, we formulate a notion of axiomatic G(1)-vertex algebra, prove certain basic properties and give certain examples, where the notion of axiomatic G(1)-vertex algebra is a nonlocal generalization of the notion of vertex-algebra. We also show how to construct axiomatic G(1)-vertex algebras from a set of compatible G(1)-vertex operators.
引用
收藏
页码:281 / 327
页数:47
相关论文
共 50 条
  • [1] Modular Virasoro vertex algebras and affine vertex algebras
    Jiao, Xiangyu
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2019, 519 : 273 - 311
  • [2] A new construction of vertex algebras and quasi-modules for vertex algebras
    Li, HS
    ADVANCES IN MATHEMATICS, 2006, 202 (01) : 232 - 286
  • [3] On vertex Leibniz algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) : 2356 - 2370
  • [4] W-algebras as coset vertex algebras
    Arakawa, Tomoyuki
    Creutzig, Thomas
    Linshaw, Andrew R.
    INVENTIONES MATHEMATICAE, 2019, 218 (01) : 145 - 195
  • [5] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363
  • [6] Toroidal vertex algebras and their modules
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2012, 365 : 50 - 82
  • [7] An Abstract Construction of Vertex Algebras
    Zhang, Wei
    ALGEBRA COLLOQUIUM, 2014, 21 (03) : 427 - 436
  • [8] Hopf actions on vertex algebras
    Dong, Chongying
    Ren, Li
    Yang, Chao
    JOURNAL OF ALGEBRA, 2024, 644 : 1 - 22
  • [9] Local realizations of vertex algebras
    Wang, Peng
    Chen, Liangyun
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 211
  • [10] Orbifolds of lattice vertex algebras
    Bakalov, Bojko
    Elsinger, Jason
    Kac, Victor G.
    Todorov, Ivan
    JAPANESE JOURNAL OF MATHEMATICS, 2023, 18 (02): : 169 - 274