Second-order approximation of free-discontinuity problems with linear growth

被引:0
作者
Esposito, Teresa [1 ]
机构
[1] Westfalische Wilhelms Univ Munster, Inst Numer & Angew Math, Einsteinstr 62, D-48149 Munster, Germany
关键词
Ambrosio-Tortorelli approximation; free-discontinuity problems; Gamma; -convergence; LOWER SEMICONTINUITY;
D O I
10.3233/ASY-181476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by applications to image denoising, we propose an approximation of functionals of the form F (u) = integral(Omega) vertical bar del u vertical bar dx + integral(Su) g (vertical bar u(+)- u(-)vertical bar) d'Hn-1 + vertical bar D(c)u vertical bar (Omega), u is an element of BV(Omega), with g : [0, +infinity) -> [0, + infinity) increasing and bounded. The approximating functionals are of Ambrosio-Tortorelli type and depend on the Hessian or on the Laplacian of the edge variable v which thus belongs to W-2,W-2(Omega). When the space dimension is equal to two and three v is then continuous and this improved regularity leads to a sequence of approximating functionals which are ready to be used for numerical simulations.
引用
收藏
页码:21 / 52
页数:32
相关论文
共 20 条
[1]  
Adams RA., 1975, Sobolev Spaces
[2]  
Alicandro R., 1999, Interfaces Free Bound, V1, P17, DOI [DOI 10.4171/IFB/2, 10.4171/ifb/2]
[3]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[4]  
AMBROSIO L, 1989, B UNIONE MAT ITAL, V3B, P857
[5]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[6]  
[Anonymous], 1993, An Introduction to-Convergence
[7]  
BOUCHITTE G, 1995, J REINE ANGEW MATH, V458, P1
[8]  
Braides A., 2002, OXFORD LECT SERIES M, V22
[9]   SECOND-ORDER EDGE-PENALIZATION IN THE AMBROSIO-TORTORELLI FUNCTIONAL [J].
Burger, M. ;
Esposito, T. ;
Zeppieri, C. I. .
MULTISCALE MODELING & SIMULATION, 2015, 13 (04) :1354-1389
[10]   A Guide to the TV Zoo [J].
Burger, Martin ;
Osher, Stanley .
LEVEL SET AND PDE BASED RECONSTRUCTION METHODS IN IMAGING, 2013, 2090 :1-70