Materials-engineering challenges for the fusion core and lifetime components of the fusion nuclear science facility

被引:19
作者
Rowcliffe, A. F. [1 ]
Kessel, C. E. [2 ]
Katoh, Y. [1 ]
Garrison, L. M. [1 ]
Tan, L. [1 ]
Yamamoto, Y. [1 ]
Wiffen, F. W. [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
关键词
RESEARCH-AND-DEVELOPMENT; CORROSION BEHAVIOR; FLOWING PB-15.7LI; POWER-PLANT; BLANKET; DESIGN; DEMO; REACTOR; INTEGRATION; EUROFER;
D O I
10.1016/j.nme.2018.05.025
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
From the perspective of materials research and development (R&D) for the fusion core and near-core lifetime components of deuterium-tritium fusion power systems, the Fusion Neutron Science Facility (FNSF) concept plays a very important function by generating the complete fusion in-service environment and providing a platform for materials component-level testing. The FNSF provides the critical link between the ITER-era and the electricity-producing facilities, DEMO and the commercial power plant. The main features of the FNSF are described and the rationale presented for the selection of structural materials to meet the challenges of the power core components and also for the system lifetime components. The calculated radiation damage parameters and potential operating temperatures requirements for each of the operational phases are presented ranging from nuclear break-in up to DEMO relevant conditions. The interdependence of the FNSF and fusion nuclear materials research are discussed, and examples of near-term materials R&D activities are outlined which could address several current FNSF-related design issues.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2013, SOFE 2013
[2]   Critical questions in materials science and engineering for successful development of fusion power [J].
Bloom, E. E. ;
Busby, J. T. ;
Duty, C. E. ;
Maziasz, P. J. ;
McGreevy, T. E. ;
Nelson, B. E. ;
Pint, B. A. ;
Tortorelli, P. F. ;
Zinkle, S. J. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 :1-10
[3]   Materials testing facilities and programmes for fission and ion implantation damage [J].
de Vicente, S. M. Gonzalez ;
Boutard, J. -L. ;
Zinkle, S. J. ;
Tanigawa, H. .
NUCLEAR FUSION, 2017, 57 (09)
[4]   Lessons learnt from fission materials R&D programmes [J].
English, Colin ;
Buckthorpe, Derek .
NUCLEAR FUSION, 2017, 57 (09)
[5]   Overview of EU DEMO design and R&D activities [J].
Federici, G. ;
Kemp, R. ;
Ward, D. ;
Bachmann, C. ;
Franke, T. ;
Gonzalez, S. ;
Lowry, C. ;
Gadomska, M. ;
Harman, J. ;
Meszaros, B. ;
Morlock, C. ;
Romanelli, F. ;
Wenninger, R. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :882-889
[6]   Reactor integration of the helium cooled pebble bed blanket for DEMO [J].
Hermsmeyer, S ;
Boccaccini, LV ;
Fischer, U ;
Köhly, C ;
Rey, J ;
Ward, D .
FUSION ENGINEERING AND DESIGN, 2005, 75-79 :779-783
[7]   Tungsten monoblock concepts for the Fusion Nuclear Science Facility (FNSF) first wall and divertor [J].
Huang, Y. ;
Tillack, M. S. ;
Ghoniem, N. M. .
FUSION ENGINEERING AND DESIGN, 2018, 135 :346-355
[8]   Multiphysics modeling of the FW/Blanket of the US fusion nuclear science facility (FNSF) [J].
Huang, Y. ;
Tillack, M. S. ;
Ghoniem, N. M. ;
Blanchard, J. P. ;
El-Guebaly, L. A. ;
Kessel, C. E. .
FUSION ENGINEERING AND DESIGN, 2018, 135 :279-289
[9]   A STEPPED APPROACH FROM IFMIF/EVEDA TOWARD IFMIF [J].
Ibarra, A. ;
Heidinger, R. ;
Barabaschi, P. ;
Mota, F. ;
Mosnier, A. ;
Cara, P. ;
Nitti, F. S. .
FUSION SCIENCE AND TECHNOLOGY, 2014, 66 (01) :252-259
[10]   Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects [J].
Katoh, Yutai ;
Ozawa, Kazumi ;
Shih, Chunghao ;
Nozawa, Takashi ;
Shinavski, Robert J. ;
Hasegawa, Akira ;
Snead, Lance L. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 448 (1-3) :448-476