Cu2+ Modified g-C3N4 Photocatalysts for Visible Light Photocatalytic Properties

被引:59
|
作者
Li, Xiaowei [1 ]
Wang, Bin [1 ]
Yin, Wenxuan [1 ]
Di, Jun [1 ]
Xia, Jiexiang [1 ]
Zhu, Wenshuai [1 ]
Li, Huaming [1 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu/g-C3N4; Photocatalytic; Visible light; Active species; RhB; CIP; GRAPHITIC CARBON NITRIDE; HYDROGEN EVOLUTION; DOPED G-C3N4; DEGRADATION; WATER; HETEROJUNCTION; PHOTOREDUCTION; CONSTRUCTION; INACTIVATION; COMPOSITES;
D O I
10.3866/PKU.WHXB201902001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic technology can effectively solve the problem of increasingly serious water pollution, the core of which is the design and synthesis of highly efficient photocatalytic materials. Semiconductor photocatalysts are currently the most widely used photocatalysts. Among these is graphitic carbon nitride (g-C3N4), which has great potential in environment management and the development of new energy owing to its low cost, easy availability, unique band structure, and good thermal stability. However, the photocatalytic activity of g-C3N4 remains low because of problems such as wide bandgap, weakly absorb visible light, and the high recombination rate of photogenerated carriers. Among various modification strategies, doping modification is an effective and simple method used to improve the photocatalytic performance of materials. In this work, Cu/g-C3N4 photocatalysts were successfully prepared by incorporating Cu2+ into g-C3N4 to further optimize photocatalytic performance. At the same time, the structure, morphology, and optical and photoelectric properties of Cu/g-C3N4 photocatalysts were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy (DRS), and photoelectric tests. XRD and XPS were used to ensure that the prepared photocatalysts were Cu/g-C3N4 and the valence state of Cu was in the form of Cu2+. Under visible light irradiation, the photocatalytic activity of Cu/g-C3N4 and pure g-C3N4 photocatalysts were investigated in terms of the degradation of RhB and CIP by comparing the amount of introduced copper ions. The experimental results showed that the degradation ability of Cu/g-C3N4 photocatalysts was stronger than that of pure g-C3N4. The N-2 adsorption-desorption isotherms of g-C3N4 and Cu/g-C3N4 demonstrated that the introduction of copper had little effect on the microstructure of g-C3N4. The small difference in specific surface area indicates that the enhanced photocatalytic activity may be attributed to the effective separation of photogenerated carriers. Therefore, the enhanced photocatalytic degradation of RhB and CIP over Cu/g-C3N4 may be due to the reduction of carrier recombination rate by copper. The photoelectric test showed that the incorporation of Cu2+ into g-C3N4 could reduce the electron-hole recombination rate of g-C3N4 and accelerate the separation of electron-hole pairs, thus enhancing the photocatalytic activity of Cu/g-C3N4. Free radical trapping experiments and electron spin resonance indicated that the synergistic effect of superoxide radicals (O-2(center dot-)), hydroxyl radicals (center dot OH) and holes could increase the photocatalytic activity of Cuig-C3N4 materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide
    Chen, Quan-Liang
    Liu, Yi-Ling
    Tong, Li-Ge
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [22] Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation
    Liao, Gaozu
    Zhu, Dongyun
    Li, Laisheng
    Lan, Bingyan
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 280 : 531 - 535
  • [23] Photocatalytic Hydrogen Evolution Under Visible Light Using MoS2/g-C3N4 Nano-Photocatalysts
    Moghimifar, Zahra
    Yazdani, Farshad
    Tabar-Heydar, Kourosh
    Sadeghi, Meisam
    CATALYSIS LETTERS, 2024, 154 (03) : 1255 - 1269
  • [24] Heterostructured S-TiO2/g-C3N4 Photocatalysts with High Visible Light Photocatalytic Activity
    Alaya, Yassine
    Chouchene, Bilel
    Medjahdi, Ghouti
    Balan, Lavinia
    Bouguila, Noureddine
    Schneider, Raphael
    CATALYSTS, 2024, 14 (04)
  • [25] Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure
    Rajendran, Renji
    Vignesh, Shanmugam
    Sasireka, Asokan
    Priya, Palanisamy
    Suganthi, Sanjeevamuthu
    Raj, Vairamuthu
    Sundar, Jeyaperumal Kalyana
    Srinivasan, Manickam
    Shkir, Mohd
    AlFaify, S.
    COLLOID AND INTERFACE SCIENCE COMMUNICATIONS, 2021, 44
  • [26] Combining g-C3N4 with CsPbI3 for efficient photocatalysis under visible light
    Liu, Yanfei
    Ma, Zhen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 628 (628)
  • [27] Microwave Induced Inverse Spinel NiFe2O4 Decorated g-C3N4 Nanosheet for Enhanced Visible Light Photocatalytic Activity
    Renukadevi, S. T.
    Jeyakumari, A. Pricilla
    JOURNAL OF CLUSTER SCIENCE, 2022, 33 (05) : 2019 - 2029
  • [28] Preparation and properties of visible light responsive g-C3N4/BiNbO4 photocatalysts for tinidazole decomposition
    Zhao, Jie
    He, Qiang
    Zhang, Xiaolong
    Yang, Jie
    Yao, Binghua
    Zhang, Qian
    Yu, Xiaojiao
    INTEGRATED FERROELECTRICS, 2016, 176 (01) : 37 - 53
  • [29] A review on photocatalytic CO2 reduction of g-C3N4 and g-C3N4-based photocatalysts modified by CQDs
    Zhao, Yuan
    Yang, Dongyin
    Yu, Cailian
    Yan, Hong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [30] Synthesis and Visible-Light Photocatalytic Activity of Bi2WO6/g-C3N4 Composite Photocatalysts
    Gui Ming-Sheng
    Wang Peng-Fei
    Yuan Dong
    Yang Yi-Kun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2013, 29 (10) : 2057 - 2064