We present the design and experimental results of a novel overmoded slow-wave high-power microwave (HPM) generator that is featured by its compactness, low-operation magnetic field, and potentially high power and high efficiency. The device includes two slow-wave structure (SWS) sections, a resonant cavity, and a tapered waveguide. The resonant cavity was well designed and was used to achieve the axial mode selection and to decrease the length of the SWS sections. The radial mode selection is achieved using the property of "surface wave" of the device to excite the TM01 mode while making the higher TM0n modes unexcited. The physical mechanisms of axial and radial mode selections ensure that the microwave is produced with a single mode and a narrow band. The feasibility of low magnetic field operation is also investigated based on the characteristics of the overmoded slow-wave devices. Experiments were carried out at the Spark-2 accelerator. At diode voltage of 474 kV, beam current of 5.2 kA, and guiding magnetic field strength of 0.6 T, a microwave was generated with power of 510 MW, mode of TM01, and frequency of 9.54 GHz. The relative half width of the frequency spectrum is Deltaf/f = 0.6%, and the beam-to-microwave efficiency is about 21% in our experiment.