A visit to the Erdos problem

被引:9
作者
Humke, PD [1 ]
Laczkovich, M
机构
[1] St Olaf Coll, Dept Math, Northfield, MN 55057 USA
[2] Eotvos Lorand Univ, Dept Anal, H-1088 Budapest, Hungary
关键词
D O I
10.1090/S0002-9939-98-04167-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erdos asked if for every infinite set, A, of real numbers there exists a measurable subset of the reals having positive measure that does not contain a subset similar to A. In this note we transform this question to a finite combinatorial problem. Using this translation we extend some results of Eigen and Falconer concerning slow sequences for which the answer to Erdos' question is positive.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 10 条
[1]  
Borwein D., 1978, CAN MATH B, V21, P497
[2]  
DEREYNA JA, 1983, P AM MATH SOC, V89, P291
[3]  
Eigen Stanley J., 1985, STUDIA SCI MATH HUNG, V20, P411
[4]  
ERDOS P, 1974, MATH BALKANICA, V4, P203
[5]  
ERDOS P, 1983, MEAS THEOR C OB
[6]  
ERDOS P, 1981, SCOTTISH BOOK MATH S, P35
[7]  
Erdos P., 1978, Real Anal. Exchange, V4, P113
[8]   ON A PROBLEM OF ERDOS ON SEQUENCES AND MEASURABLE SETS [J].
FALCONER, KJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (01) :77-78
[9]   LARGE SETS NOT CONTAINING IMAGES OF A GIVEN SEQUENCE [J].
KOMJATH, P .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1983, 26 (01) :41-43
[10]   SOME RESULTS CONNECTED WITH A PROBLEM OF ERDOS .2. [J].
MILLER, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 75 (02) :265-268