Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement - a review

被引:67
|
作者
Narankhishig, Zoljargal [1 ]
Ham, Jeonggyun [1 ]
Lee, Hoseong [2 ]
Cho, Honghyun [3 ]
机构
[1] Chosun Univ, Grad Sch, 309 Pilmundaero, Gwangju 61452, South Korea
[2] Korea Univ, Dept Mech Engn, Seoul, South Korea
[3] Chosun Univ, Dept Mech Engn, 309 Pilmundaero, Gwangju 61452, South Korea
关键词
Convective heat transfer; Thermal conductivity; Viscosity; Magnetic field; Hybrid nanofluid; ENTROPY GENERATION ANALYSIS; LAMINAR FORCED-CONVECTION; ENERGY-STORAGE SYSTEM; THERMAL-CONDUCTIVITY; HYBRID NANOFLUID; NATURAL-CONVECTION; TRANSFER COEFFICIENT; CARBON NANOTUBES; FERRO-NANOFLUID; TURBULENT-FLOW;
D O I
10.1016/j.applthermaleng.2021.116987
中图分类号
O414.1 [热力学];
学科分类号
摘要
The scope of this review enlightens the experimental and numerical investigations conducted on the convective heat transfer of various nanofluids, particularly hybrid nanofluids. Essential studies on the improvement of the convective heat transfer using suspensions of nanoparticles in traditional working fluids have recently appeared in the literature. Optimized heat and mass transfer of nanofluid are significantly affected by inherent nanofluid characteristics, synthesizing method for the nanofluid, the effect of magnetic force, concentration and size of nanoparticles, and Re (Reynolds number). Besides, a critical factor regarding the material properties, thermal properties, and performance of the magnetic nanofluids is highly sensitive to the small variation in the magnetic force and magnetic field gradient. Several studies have concluded that the magnetic field in magnetic nanoparticles improves the convective heat transfer performance of a nanofluid by approximately 13%-75%. Furthermore, some applications of a hybrid nanofluid in thermal systems have also been introduced.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Temperature Dependency of Thermophysical Properties in Convective Heat Transfer Enhancement in Nanofluids
    Li, Wenhao
    Nakayama, Akira
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2015, 29 (03) : 504 - 512
  • [22] A critical review on convective heat transfer correlations of nanofluids
    Sarkar, Jahar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (06) : 3271 - 3277
  • [23] Numerical study of convective heat transfer of nanofluids: A review
    Vanaki, Sh. M.
    Ganesan, R.
    Mohammed, H. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 54 : 1212 - 1239
  • [24] Influence of Parameters on Nanofluids Flow and Heat Transfer Characteristics, a Review
    Bibin, B. S.
    Benjamin, Sangeetha
    Srivastava, Divyansh
    Reddy, B. Anurag
    Chereches, Elena Ionela
    Gundabattini, Edison
    JOURNAL OF NANOFLUIDS, 2023, 12 (05) : 1173 - 1193
  • [25] A REVIEW ON HEAT TRANSFER ENHANCEMENT WITH NANOFLUIDS
    Guo, Zhixiong
    JOURNAL OF ENHANCED HEAT TRANSFER, 2020, 27 (01) : 1 - 70
  • [26] Heat transfer characteristics of nanofluids in heat pipes: A review
    Sureshkumar, R.
    Mohideen, S. Tharves
    Nethaji, N.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 20 : 397 - 410
  • [27] Effect of Volume Fraction of Nanoparticles to the Convective Heat Transfer of Nanofluids
    Ling Zhiyong
    Zou Tao
    Ding Jianning
    Cheng Guanggui
    Fu Pengfei
    Zhang Tifeng
    Zhu Aijun
    FUNCTIONAL MANUFACTURING TECHNOLOGIES AND CEEUSRO II, 2011, 464 : 528 - 531
  • [28] Effect of convective transport mechanisms on heat transfer characteristics of nanofluids
    Mohantmadpour, E.
    Eghdamtalab, M.
    SCIENTIA IRANICA, 2016, 23 (06) : 2567 - 2574
  • [29] Convective heat transfer of nanofluids in a concentric annulus
    Yang, C.
    Li, W.
    Nakayama, A.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 71 : 249 - 257
  • [30] CONVECTIVE HEAT TRANSFER OF ALUMINA NANOFLUIDS IN A MICROCHANNEL
    Vafaei, Saeid
    Wen, Dongsheng
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 6: MICROCHANNELS, NANO, NANOFLUIDS, SPRAY COOLING, POROUS MEDIA, 2010, : 585 - 589