Light scattering pattern specific convolutional network static cytometry for label-free classification of cervical cells

被引:16
作者
Liu, Shanshan [1 ,2 ]
Yuan, Zeng [3 ]
Qiao, Xu [2 ]
Liu, Qiao [4 ]
Song, Kun [3 ]
Kong, Beihua [3 ]
Su, Xuantao [1 ]
机构
[1] Shandong Univ, Sch Microelect, Jinan 250101, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Inst Biomed Engn, Jinan, Peoples R China
[3] Shandong Univ, Qilu Hosp, Dept Obstet & Gynecol, Jinan, Peoples R China
[4] Shandong Univ, Sch Basic Med Sci, Dept Mol Med & Genet, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
cell analysis; cervical cancer; deep learning; label‐ free; light scattering pattern; NEURAL-NETWORKS; IMAGE-ANALYSIS; CANCER;
D O I
10.1002/cyto.a.24349
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cervical cancer is a major gynecological malignant tumor that threatens women's health. Current cytological methods have certain limitations for cervical cancer early screening. Light scattering patterns can reflect small differences in the internal structure of cells. In this study, we develop a light scattering pattern specific convolutional network (LSPS-net) based on deep learning algorithm and integrate it into a 2D light scattering static cytometry for automatic, label-free analysis of single cervical cells. An accuracy rate of 95.46% for the classification of normal cervical cells and cancerous ones (mixed C-33A and CaSki cells) is obtained. When applied for the subtyping of label-free cervical cell lines, we obtain an accuracy rate of 93.31% with our LSPS-net cytometric technique. Furthermore, the three-way classification of the above different types of cells has an overall accuracy rate of 90.90%, and comparisons with other feature descriptors and classification algorithms show the superiority of deep learning for automatic feature extraction. The LSPS-net static cytometry may potentially be used for cervical cancer early screening, which is rapid, automatic and label-free.
引用
收藏
页码:610 / 621
页数:12
相关论文
共 42 条
  • [1] Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma
    Aguirre, Andrew J.
    Hruban, Ralph H.
    Raphael, Benjamin J.
    [J]. CANCER CELL, 2017, 32 (02) : 185 - +
  • [2] Medical applications of reflectance spectroscopy in the diffusive and sub-diffusive regimes
    Akter, Sharmin
    Hossain, Md. Golzar
    Nishidate, Izumi
    Hazama, Hisanao
    Awazu, Kunio
    [J]. JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (06) : 337 - 350
  • [3] Medical Image Analysis using Convolutional Neural Networks: A Review
    Anwar, Syed Muhammad
    Majid, Muhammad
    Qayyum, Adnan
    Awais, Muhammad
    Alnowami, Majdi
    Khan, Muhammad Khurram
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
  • [4] Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis
    Arbyn, Marc
    Weiderpass, Elisabete
    Bruni, Laia
    de Sanjose, Silvia
    Saraiya, Mona
    Ferlay, Jacques
    Bray, Freddie
    [J]. LANCET GLOBAL HEALTH, 2020, 8 (02): : E191 - E203
  • [5] Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ
    Backman, V
    Gurjar, R
    Badizadegan, K
    Itzkan, L
    Dasari, RR
    Perelman, LT
    Feld, MS
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (04) : 1019 - 1026
  • [6] Why does cervical cancer occur in a state-of-the-art screening program?
    Castle, Philip E.
    Kinney, Walter K.
    Cheung, Li C.
    Gage, Julia C.
    Fetterman, Barbara
    Poitras, Nancy E.
    Lorey, Thomas S.
    Wentzensen, Nicolas
    Befano, Brian
    Schussler, John
    Katki, Hormuzd A.
    Schiffman, Mark
    [J]. GYNECOLOGIC ONCOLOGY, 2017, 146 (03) : 546 - 553
  • [7] Cervical cancer
    Cohen, Paul A.
    Jhingran, Anjua
    Oaknin, Ana
    Denny, Lynette
    [J]. LANCET, 2019, 393 (10167) : 169 - 182
  • [8] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [9] Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
    Ferlay, J.
    Colombet, M.
    Soerjomataram, I.
    Mathers, C.
    Parkin, D. M.
    Pineros, M.
    Znaor, A.
    Bray, F.
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (08) : 1941 - 1953
  • [10] Computer assisted recognition of breast cancer in biopsy images via fusion of nucleus-guided deep convolutional features
    George, Kalpana
    Sankaran, Praveen
    Joseph, Paul K.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194