On the Spectrum of the Stokes Operator

被引:1
作者
Ilyin, A. A.
机构
[1] Keldysh Institute of Applied Mathematics,
基金
俄罗斯基础研究基金会;
关键词
Stokes operator; Navier-Stokes equations; attractor dimension; Lieb-Thirring inequalities; ATTRACTORS; DOMAINS; INEQUALITIES; DIMENSION; EXPONENTS; EQUATIONS;
D O I
10.1007/s10688-009-0034-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Li-Yau type lower bounds for the eigenvalues of the Stokes operator and give applications to the attractors of the Navier-Stokes equations.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 24 条
[1]  
BABENKO KI, 1982, SOV MATH DOKL, V25, P359
[2]  
Babin A. V., 1992, Attractors of evolutionary partial differential equations
[3]  
Chepyzhov VV, 2004, DISCRETE CONT DYN-A, V10, P117
[4]   GLOBAL LYAPUNOV EXPONENTS, KAPLAN-YORKE FORMULAS AND THE DIMENSION OF THE ATTRACTORS FOR 2D NAVIER-STOKES EQUATIONS [J].
CONSTANTIN, P ;
FOIAS, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :1-27
[5]  
CONSTANTIN P, 1988, N STOKES EQUATIONS
[6]   Lieb-Thirring inequalities with improved constants [J].
Dolbeault, Jean ;
Laptev, Ari ;
Loss, Michael .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (04) :1121-1126
[7]  
FOIAS C, 2001, N STOKES EQUATIONS T
[8]  
Ghidaglia J.M., 1988, Differential Integral Equations, V1, P1
[9]   New bounds on the Lieb-Thirring constants [J].
Hundertmark, D ;
Laptev, A ;
Weidl, T .
INVENTIONES MATHEMATICAE, 2000, 140 (03) :693-704
[10]   Attractors for Navier-Stokes equations in domains with finite measure [J].
Ilyin, AA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (05) :605-616