Statistical method for modeling Knudsen diffusion in nanopores

被引:13
作者
Colson, Fenner [1 ]
Barlow, D. A. [2 ]
机构
[1] Florida Gulf Coast Univ, Dept Chem & Phys, Ft Myers, FL 33965 USA
[2] Alderman Barlow Labs, POB 1394, Trenton, FL 32693 USA
关键词
GAS-DIFFUSION; MEMBRANES; TRANSPORT; PERMEATION;
D O I
10.1103/PhysRevE.100.062125
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents a statistical method for the calculation of gaseous flux and diffusion coefficients through a Knudsen-regime cylindrical nanopore. A general integral formula for the flux is derived in terms of collision frequency, molecular density, and a scattering path length probability distribution. Under appropriate steady-state assumptions, the general formula simplifies to Fick's first law, from which an expression for the diffusion coefficient is derived. The model is shown to be dimensionally consistent with the Einstein relation. The conditions for agreement with Fick's second law are investigated. Using a model probability distribution the model leads to an expression for the diffusion coefficient for a pore of finite length. This result is shown to compare favorably with a classic formula from the literature.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Diffusion in Ni-Zr Melts: Insights from Statistical Mechanics and Atomistic Modeling
    Kromik, Andreas
    Levchenko, Elena, V
    Massobrio, Carlo
    Evteev, Alexander, V
    ADVANCED THEORY AND SIMULATIONS, 2018, 1 (12)
  • [22] Modeling and Simulation of Polymeric Nanocapsule Formation by Emulsion Diffusion Method
    Hassou, M.
    Couenne, F.
    le Gorrec, Y.
    Tayakout, M.
    AICHE JOURNAL, 2009, 55 (08) : 2094 - 2105
  • [23] Modeling thermophoretic effects in solid-state nanopores
    Belkin, Maxim
    Chao, Shu-Han
    Giannetti, Gino
    Aksimentiev, Aleksei
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 826 - 838
  • [24] Model for Surface Diffusion of Adsorbed Gas in Nanopores of Shale Gas Reservoirs
    Wu, Keliu
    Li, Xiangfang
    Wang, Chenchen
    Yu, Wei
    Chen, Zhangxin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (12) : 3225 - 3236
  • [25] Diffusion and flow across shape-perturbed plasmodesmata nanopores in plants
    Christensen, Anneline H.
    Stone, Howard A.
    Jensen, Kaare H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (08)
  • [26] A method to tune the ionic current rectification of track-etched nanopores by using surfactant
    Wang, Lin
    Yan, Yu
    Xie, Yanbo
    Chen, Long
    Xue, Jianming
    Yan, Sha
    Wang, Yugang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (02) : 576 - 581
  • [27] Diffusion in nanopores: correlating experimental findings with "first-principles" predictions
    Hwang, Seungtaik
    Kaerger, Joerg
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (07): : 1001 - 1013
  • [28] Molecular simulation of protein dynamics in nanopores. II. Diffusion
    Javidpour, Leili
    Tabar, M. Reza Rahimi
    Sahimi, Muhammad
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (08)
  • [29] Water in PHI Nanopores: Modeling Adsorption, Solvent Structure, and Thermodynamics
    Heske, Julian
    Kuehne, Thomas D.
    Antonietti, Markus
    ACS OMEGA, 2023, 8 (29): : 26526 - 26532
  • [30] Energetics and diffusion of liquid water and hydrated ions through nanopores in graphene: ab initio molecular dynamics simulation
    Guerrero-Aviles, Raul
    Orellana, Walter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (31) : 20551 - 20558