Opening of Bottleneck Pores for the Improvement of Nitrogen Doped Carbon Electrocatalysts

被引:215
作者
Pampel, Jonas [1 ]
Fellinger, Tim-Patrick [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, Muhlenberg 1, D-14476 Potsdam, Germany
关键词
PERFORMANCE OXYGEN REDUCTION; METAL-FREE ELECTROCATALYSTS; ADVANCED ENERGY-CONVERSION; HIGH-SURFACE-AREA; POROUS CARBON; CATALYSTS; ROUTE; BLACK;
D O I
10.1002/aenm.201502389
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile synthesis strategy to control the porosity of ionothermal nitrogen doped carbons is demonstrated. Adenine is used as cheap and biomass based precursor and a mixture of NaCl/ZnCl2 as combined solvent-porogen. Variation of the ratio between the two salt influences the pore structure over a wide range. The eutectic mixture leads to micro-and mesoporous material with high total pore volume (TPV) of 3.0 cm(3) g(-1) and very high surface area of 2900 m(2) g(-1) essentially rendering the product an "all-surface-area" nitrogen doped carbon. Increasing NaCl contents cause a continuous increase of the mesopore size and the formation of additional macropores resulting in a very high maximal TPV of 5.2 cm(3) g(-1), showing 2540 m(2) g(-1) specific surface area using 60 mol% NaCl. Interestingly, the electrocatalytic activity of the samples toward oxygen reduction is strongly affected by the detailed pore structure. The different-however, chemically equivalent-catalysts vary up to 70 mV in their half wave potentials (E-1/2). The sample with optimized pore system shows a high selectivity toward the favored four electron process and an outstanding E-1/2 of approximate to 880 mV versus reversible hydrogen electrode (RHE), which is one of the best values reported for nitrogen doped carbons so far.
引用
收藏
页数:8
相关论文
共 52 条
[1]   The preparation of activated carbon from macadamia nutshell by chemical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1997, 35 (12) :1723-1732
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[4]   A route to high surface area, porosity and inclusion of large molecules in crystals [J].
Chae, HK ;
Siberio-Pérez, DY ;
Kim, J ;
Go, Y ;
Eddaoudi, M ;
Matzger, AJ ;
O'Keeffe, M ;
Yaghi, OM .
NATURE, 2004, 427 (6974) :523-527
[5]  
Chen P, 2014, ENERG ENVIRON SCI, V7, P4095, DOI [10.1039/c4ee02531h, 10.1039/C4EE02531H]
[6]   Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction [J].
Chung, Hoon T. ;
Won, Jong H. ;
Zelenay, Piotr .
NATURE COMMUNICATIONS, 2013, 4
[7]   Carbon Nanomaterials for Advanced Energy Conversion and Storage [J].
Dai, Liming ;
Chang, Dong Wook ;
Baek, Jong-Beom ;
Lu, Wen .
SMALL, 2012, 8 (08) :1130-1166
[8]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[9]   Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes [J].
Duan, Jingjing ;
Chen, Sheng ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ACS CATALYSIS, 2015, 5 (09) :5207-5234
[10]   Metal-free ionic liquid-derived electrocatalyst for high-performance oxygen reduction in acidic and alkaline electrolytes [J].
Elumeeva, K. ;
Fechler, N. ;
Fellinger, T. P. ;
Antonietti, M. .
MATERIALS HORIZONS, 2014, 1 (06) :588-594