Highest weak focus order for trigonometric Lienard equations

被引:6
作者
Gasull, Armengol [1 ]
Gine, Jaume [2 ]
Valls, Claudia [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lleida, Dept Matemat, Avda Jaume 2,69, Lleida 25001, Catalonia, Spain
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Trigonometric Lienard equation; Weak focus; Cyclicity; AMPLITUDE LIMIT-CYCLES; SYSTEMS; COMPUTATION; LIAPUNOV; CENTERS; NUMBER;
D O I
10.1007/s10231-019-00936-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a planar analytic differential equation with a critical point which is a weak focus of order k, it is well known that at most k limit cycles can bifurcate from it. Moreover, in case of analytic Lienard differential equations this order can be computed as one half of the multiplicity of an associated planar analytic map. By using this approach, we can give an upper bound of the maximum order of the weak focus of pure trigonometric Lienard equations only in terms of the degrees of the involved trigonometric polynomials. Our result extends to this trigonometric Lienard case a similar result known for polynomial Lienard equations.
引用
收藏
页码:1673 / 1684
页数:12
相关论文
共 28 条
  • [11] Small-amplitude limit cycles in polynomial Lienard systems
    Christopher, Colin J.
    Lloyd, Noel G.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02): : 183 - 190
  • [12] An explicit bound of the number of vanishing double moments forcing composition
    Cima, Anna
    Gasull, Armengol
    Manosas, Francesc
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (03) : 339 - 350
  • [13] A simple solution of some composition conjectures for Abel equations
    Cima, Anna
    Gasull, Armengol
    Manosas, Francesc
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 477 - 486
  • [14] An explicit expression of the first Liapunov and period constants with applications
    Gasull, A
    Guillamon, A
    Manosa, V
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) : 190 - 212
  • [15] On the number of limit cycles for perturbed pendulum equations
    Gasull, A.
    Geyer, A.
    Manosas, F.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) : 2141 - 2167
  • [16] Small-amplitude limit cycles in Lienard systems via multiplicity
    Gasull, A
    Torregrosa, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) : 186 - 211
  • [17] Center problem for trigonometric Lienard systems
    Gasull, Armengol
    Gine, Jaume
    Valls, Claudia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3928 - 3942
  • [18] Gasull A, 2001, COMPUT APPL MATH, V20, P149
  • [19] Implementation of a new algorithm of computation of the Poincare-Liapunov constants
    Giné, J
    Santallusia, X
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (02) : 465 - 476
  • [20] On some open problems in planar differential systems and Hilbert's 16th problem
    Gine, Jaume
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1118 - 1134