Finite and Infinite Horizon Optimal Triggering of Networked Control Systems

被引:0
作者
Heydari, Ali [1 ]
机构
[1] South Dakota Sch Mines & Teclmol, Mech Engn, Rapid City, SD 57701 USA
来源
2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2016年
基金
美国国家科学基金会;
关键词
TIME NONLINEAR-SYSTEMS; COMMUNICATION; STABILIZATION; EQUIVALENCE; STABILITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimal triggering of networked control systems is investigated in this study and the framework of approximate dynamic programming is selected for solving the problem. Different cases including Zero-Order-Hold, Generalized Zero-Order-Hold, and lossy networks are investigated in designing optimal triggering/scheduling laws. After analyzing convergence, optimality, and stability, the performance of the method is demonstrated through different numerical examples.
引用
收藏
页码:4255 / 4262
页数:8
相关论文
共 65 条
[21]   Analysis of event-driven controllers for linear systems [J].
Heemels, W. P. M. H. ;
Sandee, J. H. ;
Van den Bosch, P. P. J. .
INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (04) :571-590
[22]  
Heydari A., J FRANKLIN IN PRESS
[23]   Theoretical and Numerical Analysis of Approximate Dynamic Programming with Approximation Errors [J].
Heydari, Ali .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (02) :301-311
[24]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[25]  
Howard R., 1960, DYNAMIC PROGRAMMING
[26]   Limited communication control [J].
Hristu, D ;
Morgansen, K .
SYSTEMS & CONTROL LETTERS, 1999, 37 (04) :193-205
[27]   Stabilization with control networks [J].
Ishii, H ;
Francis, BA .
AUTOMATICA, 2002, 38 (10) :1745-1751
[28]  
Jeffreys H., 1988, METHODS MATH PHYS, P446
[29]  
Khalil H. K., 2002, Nonlinear systems, P111
[30]   Maximum allowable delay bounds of networked control systems [J].
Kim, DS ;
Lee, YS ;
Kwon, WH ;
Park, HS .
CONTROL ENGINEERING PRACTICE, 2003, 11 (11) :1301-1313