On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem

被引:16
作者
Almeida, Ricardo [1 ]
Kamocki, Rafal [2 ]
Malinowska, Agnieszka B. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
[3] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[4] SGH Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 96卷
关键词
Fractional calculus; Fractional differential systems; Flocking model; Multi-agent systems; Consensus optimal control; SPARSE STABILIZATION; NONLOCAL MODEL; FLOCKING;
D O I
10.1016/j.cnsns.2020.105678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a sparse flocking control for the fractional Cucker-Smale multi-agent model. The Caputo fractional derivative, in the equations describing the dynamics of a consensus parameter, makes it possible to take into account in the self-organization of group its history and memory dependency. External control is designed based on necessary conditions for a local solution to the appropriate optimal control problem. Numerical simulations demonstrate the effectiveness of the control scheme. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 39 条
[31]  
Samko s.G., 1993, THEORY APPL
[32]   Cucker-Smale flocking under hierarchical leadership [J].
Shen, Jackie .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 68 (03) :694-719
[33]   A new collection of real world applications of fractional calculus in science and engineering [J].
Sun, HongGuang ;
Zhang, Yong ;
Baleanu, Dumitru ;
Chen, Wen ;
Chen, YangQuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 64 :213-231
[34]   Fractional nonlinear dynamics of learning with memory [J].
Tarasov, Vasily E. .
NONLINEAR DYNAMICS, 2020, 100 (02) :1231-1242
[35]   Kinetic Models for the Trading of Goods [J].
Toscani, Giuseppe ;
Brugna, Carlo ;
Demichelis, Stefano .
JOURNAL OF STATISTICAL PHYSICS, 2013, 151 (3-4) :549-566
[36]   Some pioneers of the applications of fractional calculus [J].
Valerio, Duarte ;
Machado, Jose Tenreiro ;
Kiryakova, Virginia .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :552-578
[37]   On the Ψ-Hilfer fractional derivative [J].
Vanterler da C. Sousa, J. ;
Capelas de Oliveira, E. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 :72-91
[38]   Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks [J].
Ye, Yanyan ;
Su, Housheng .
NONLINEAR DYNAMICS, 2019, 96 (02) :1391-1403
[39]   Model Predictive Flocking Control of the Cucker-Smale Multi-Agent Model With Input Constraints [J].
Zhang, Hai-Tao ;
Liu, Bin ;
Cheng, Zhaomeng ;
Chen, Guanrong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2016, 63 (08) :1265-1275