On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem

被引:16
作者
Almeida, Ricardo [1 ]
Kamocki, Rafal [2 ]
Malinowska, Agnieszka B. [3 ]
Odzijewicz, Tatiana [4 ]
机构
[1] Univ Aveiro, Ctr Res & Dev Math & Applicat CIDMA, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
[3] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
[4] SGH Warsaw Sch Econ, Dept Math & Math Econ, PL-02554 Warsaw, Poland
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2021年 / 96卷
关键词
Fractional calculus; Fractional differential systems; Flocking model; Multi-agent systems; Consensus optimal control; SPARSE STABILIZATION; NONLOCAL MODEL; FLOCKING;
D O I
10.1016/j.cnsns.2020.105678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops a sparse flocking control for the fractional Cucker-Smale multi-agent model. The Caputo fractional derivative, in the equations describing the dynamics of a consensus parameter, makes it possible to take into account in the self-organization of group its history and memory dependency. External control is designed based on necessary conditions for a local solution to the appropriate optimal control problem. Numerical simulations demonstrate the effectiveness of the control scheme. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 39 条
[1]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[2]  
Andreasson H, 2013, THESIS STOCKHOLM SWE
[3]   Optimal consensus control of the Cucker-Smale model [J].
Bailo, Rafael ;
Bongini, Mattia ;
Carrillo, Jose A. ;
Kalise, Dante .
IFAC PAPERSONLINE, 2018, 51 (13) :1-6
[4]   Pontryagin maximum principle for general Caputo fractional optimal control problems with Bolza cost and terminal constraints [J].
Bergounioux, Maitine ;
Bourdin, Loic .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
[5]   RING PATTERNS AND THEIR BIFURCATIONS IN A NONLOCAL MODEL OF BIOLOGICAL SWARMS [J].
Bertozzi, Andrea L. ;
Kolokolnikov, Theodore ;
Sun, Hui ;
Uminsky, David ;
von Brecht, James .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (04) :955-985
[6]   Existence of a weak solution for fractional Euler-Lagrange equations [J].
Bourdin, Loic .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) :239-251
[7]   Distributed Coordination of Networked Fractional-Order Systems [J].
Cao, Yongcan ;
Li, Yan ;
Ren, Wei ;
Chen, YangQuan .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (02) :362-370
[8]   Sparse stabilization and control of alignment models [J].
Caponigro, Marco ;
Fornasier, Massimo ;
Piccoli, Benedetto ;
Trelat, Emmanuel .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (03) :521-564
[9]   SPARSE STABILIZATION AND OPTIMAL CONTROL OF THE CUCKER-SMALE MODEL [J].
Caponigro, Marco ;
Fornasier, Massimo ;
Piccoli, Benedetto ;
Trelat, Emmanuel .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2013, 3 (04) :447-+
[10]   A Survey of Localization in Wireless Sensor Network [J].
Cheng, Long ;
Wu, Chengdong ;
Zhang, Yunzhou ;
Wu, Hao ;
Li, Mengxin ;
Maple, Carsten .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2012,