THE RIESZ TRANSFORM, RECTIFIABILITY, AND REMOVABILITY FOR LIPSCHITZ HARMONIC FUNCTIONS

被引:29
作者
Nazarov, Fedor [1 ]
Tolsa, Xavier [2 ]
Volberg, Alexander [3 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Riesz transform; rectifiability; Lipschitz harmonic functions; PRINCIPAL VALUES; CURVATURE; SETS;
D O I
10.5565/PUBLMAT_58214_26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, given a set E subset of Rn+1 with finite n-Hausdorff measure if the H-n dimensional Riesz transform R-Hn (left perpendicularE)f(x) = integral(E) x - y/vertical bar x - y vertical bar(n+1) f(y) H-n (y) is bounded in L-2 (H-n left perpendicularE), then E is n-rectifiable. From this result we deduce that a compact set E subset of Rn+1 with H-n (E) < infinity is removable for Lipschitz harmonic functions if and only if it is purely n-unrectifiable, thus proving the analog of Vitushkin's conjecture in higher dimensions.
引用
收藏
页码:517 / 532
页数:16
相关论文
共 18 条
  • [1] David G, 2000, REV MAT IBEROAM, V16, P137
  • [2] David G, 1998, REV MAT IBEROAM, V14, P369
  • [3] DAVID G., 1993, Mathematical Surveys and Monographs, V38, DOI DOI 10.1090/SURV/038
  • [4] The s-Riesz transform of an s-dimensional measure in a"e2 is unbounded for 1 &lt; s &lt; 2
    Eiderman, Vladimir
    Nazarov, Fedor
    Volberg, Alexander
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2014, 122 : 1 - 23
  • [5] Menger curvature and rectifiability
    Léger, JC
    [J]. ANNALS OF MATHEMATICS, 1999, 149 (03) : 831 - 869
  • [6] Rectifiable measures in R(n) and existence of principal values for singular integrals
    Mattila, P
    Preiss, D
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 : 482 - 496
  • [7] On geometric properties of harmonic Lip(1)-capacity
    Mattila, P
    Paramonov, PV
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1995, 171 (02) : 469 - 491
  • [8] Mattila P., 1999, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, DOI [DOI 10.1017/CBO9780511623813, 10.1017/CBO9780511623813]
  • [9] Melnikov M. S., 1996, Internat. Math. Res. Notices, P325, DOI 10.1155/S1073792895000249
  • [10] ANALYTIC CAPACITY - DISCRETE APPROACH AND CURVATURE OF MEASURE
    MELNIKOV, MS
    [J]. SBORNIK MATHEMATICS, 1995, 186 (5-6) : 827 - 846