Recent advances in hierarchical anode designs of TiO2-B nanostructures for lithium-ion batteries

被引:20
|
作者
Tuyet Nhung Pham [1 ]
Vu Khac Hoang Bui [2 ]
Lee, Young-Chul [2 ]
机构
[1] PHENIKAA Univ, Nano Inst PHENA, Hanoi, Vietnam
[2] Gachon Univ, Dept BioNano Technol, 1342 Seongnam Daero, Seongnam Si 13120, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
advanced anodes; bronze TiO2 (B); composite anodes; hybrid anodes; lithium-ion batteries (LIBs); N-DOPED GRAPHENE; ENHANCED CYCLING PERFORMANCE; SUPERIOR RATE PERFORMANCE; LI-ION; ELECTROCHEMICAL PROPERTIES; ANATASE TIO2; PHOTOCATALYTIC ACTIVITIES; HYBRID NANOSTRUCTURES; NANOTUBE ARRAYS; HIGH-CAPACITY;
D O I
10.1002/er.6956
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state-of-the-art development progress of the fabrication, design, modification, and applications of TiO2-B-based hierarchical nanostructures with a well-controlled size and morphology in lithium-ion battery (LIB) applications has been summarized and discussed. Based on studying on lithiation/delithiation on mechanisms of a typical metal oxide nanomaterials, along with doping with foreign atoms (metal or non-metal), using electronically conductive additives (graphene/graphene derivatives), as well as designing and using hierarchical anode-material nanostructures (hybrids/composites) containing two or more constituents in LIB applications, these strategies have provided many great opportunities to take maximum advantage of both the high capacity and rate capacity while avoiding significant capacity loss after charge/discharge cycling. In this review, the advances in TiO2-B-based anode structures at the nanoscale for LIBs have been discussed in two major sections, including (a) hierarchical heterostructures based on TiO2-B and metal, non-metal, transition metal oxides (TMOs), and transition metal dichalcogenides (TMDs); and (b) hybrid designs/nanocomposites between TiO2-B and graphene/graphene derivatives. The in-depth understanding of structure-property relationships as well as detailed suggestions on the mechanism, reason, and origin of the excellent enhancement in electrochemical performance in the above strategies, has been presented and highlighted.
引用
收藏
页码:17532 / 17562
页数:31
相关论文
共 50 条
  • [1] Lithium-ion intercalation into TiO2-B nanowires
    Armstrong, AR
    Armstrong, G
    Canales, J
    García, R
    Bruce, PG
    ADVANCED MATERIALS, 2005, 17 (07) : 862 - +
  • [2] Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries
    Ren, Yu
    Liu, Zheng
    Pourpoint, Frederique
    Armstrong, A. Robert
    Grey, Clare P.
    Bruce, Peter G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) : 2164 - 2167
  • [3] Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries
    Wang, Jingfeng
    Xie, Junjie
    Jiang, Yanmei
    Zhang, Jingjing
    Wang, Yingguo
    Zhou, Zhongfu
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (19) : 6321 - 6328
  • [4] Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries
    Jingfeng Wang
    Junjie Xie
    Yanmei Jiang
    Jingjing Zhang
    Yingguo Wang
    Zhongfu Zhou
    Journal of Materials Science, 2015, 50 : 6321 - 6328
  • [5] Recent Progress in SiC Nanostructures as Anode Materials for Lithium-Ion Batteries
    Fan, Xiaohong
    Deng, Dingrong
    Li, Yi
    Wu, Qi-Hui
    Current Materials Science, 2023, 16 (01): : 18 - 29
  • [6] Hierarchical TiO2-B composed of nanosheets with exposed {010} facets as a high-performance anode for lithium ion batteries
    Liu, Yubin
    Chen, Wenqiang
    Yang, Chengyu
    Wei, Qiaohua
    Wei, Mingdeng
    JOURNAL OF POWER SOURCES, 2018, 392 : 226 - 231
  • [7] Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries
    Kim, Yong-Tae
    Choi, Jinsub
    APPLIED CHEMISTRY FOR ENGINEERING, 2021, 32 (03): : 243 - 252
  • [8] Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries
    Chen, Chaoji
    Hu, Xianluo
    Wang, Zhaohui
    Xiong, Xiaoqin
    Hu, Pei
    Liu, Yang
    Huang, Yunhui
    CARBON, 2014, 69 : 302 - 310
  • [9] Designs of Anode-Free Lithium-Ion Batteries
    Zhao, Pei
    Pan, Jun
    Zhang, Dongqi
    Tang, Yufeng
    Tai, Zhixin
    Liu, Yajie
    Gao, Hong
    Huang, Fuqiang
    BATTERIES-BASEL, 2023, 9 (07):
  • [10] TiO2-B nanoribbons anchored with NiO nanosheets as hybrid anode materials for rechargeable lithium ion batteries
    Zhang, Jiayan
    Shen, Jianxing
    Wang, Tailin
    Zhang, Huayong
    Wei, Changbao
    Zhang, Kechang
    Yue, Yuanzheng
    CRYSTENGCOMM, 2015, 17 (07): : 1710 - 1715