Intelligence Approaches Based Direct Torque Control of Induction Motor

被引:0
作者
Douiri, Moulay Rachid [1 ]
Cherkaoui, Mohamed [1 ]
机构
[1] Mohammadia Engn Sch, Dept Elect Engn, Rabat, Morocco
来源
ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, ICANNGA 2013 | 2013年 / 7824卷
关键词
artificial neural network; direct torque control; fuzzy logic; induction motor;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a comparative study of two intelligent techniques to replace conventional comparators and selection table of direct torque control for induction machines, namely fuzzy logic and artificial neural network. The comparison with the conventional direct torque control proves that FL-DTC and NN-DTC reduces the electromagnetic torque ripple, stator flux, and stator current. Simulation results prove the effectiveness and the performances proposed strategies.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 18 条
[1]   Performances improvements and torque ripple minimization for VSI fed induction machine with direct control torque [J].
Abdelli, R. ;
Rekioua, D. ;
Rekioua, T. .
ISA TRANSACTIONS, 2011, 50 (02) :213-219
[2]  
[Anonymous], 2009, Artificial Neural Networks, DOI 10.1007/978-1-60327-101-1
[3]   FUZZY I/O CONTROLLER [J].
BUCKLEY, JJ .
FUZZY SETS AND SYSTEMS, 1991, 43 (02) :127-137
[4]  
Chow TommyW.S., 2007, Neural Networks and Computing: Learning Algorithms and Applications
[5]  
Cintula P., 2011, STUDIES LOGIC MATH L, V37
[6]  
Depenbrock M., 1988, IEEE Transactions on Power Electronics, V3, P420, DOI 10.1109/63.17963
[7]   Formal theories and linguistic descriptions [J].
Dvorák, A ;
Novák, V .
FUZZY SETS AND SYSTEMS, 2004, 143 (01) :169-188
[8]   High performance direct torque control schemes for an IPMSM drive [J].
Hassan, A. A. ;
Shehata, E. G. .
ELECTRIC POWER SYSTEMS RESEARCH, 2012, 89 :171-182
[9]   EXPERIMENT IN LINGUISTIC SYNTHESIS WITH A FUZZY LOGIC CONTROLLER [J].
MAMDANI, EH ;
ASSILIAN, S .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1975, 7 (01) :1-13
[10]  
Marino R, 2010, ADV IND CONTROL, P1, DOI 10.1007/978-1-84996-284-1