Quantitative assessment of sample stiffness and sliding friction from force curves in atomic force microscopy

被引:25
|
作者
Pratt, Jon R. [1 ]
Shaw, Gordon A. [1 ]
Kumanchik, Lee [2 ]
Burnham, Nancy A. [3 ]
机构
[1] NIST, Gaithersburg, MD 20899 USA
[2] Univ Florida, Dept Mech Engn, Gainesville, FL 32611 USA
[3] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA
关键词
atomic force microscopy; calibration; cantilevers; elasticity; hysteresis; sliding friction; CANTILEVERS; CONTACT; PROBES;
D O I
10.1063/1.3284957
中图分类号
O59 [应用物理学];
学科分类号
摘要
It has long been recognized that the angular deflection of an atomic force microscope (AFM) cantilever under "normal" loading conditions can be profoundly influenced by the friction between the tip and the surface. It is shown here that a remarkably quantifiable hysteresis occurs in the slope of loading curves whenever the normal flexural stiffness of the AFM cantilever is greater than that of the sample. This situation arises naturally in cantilever-on-cantilever calibration, but also when trying to measure the stiffness of nanomechanical devices or test structures, or when probing any type of surface or structure that is much more compliant along the surface normal than in transverse directions. Expressions and techniques for evaluating the coefficient of sliding friction between the cantilever tip and sample from normal force curves, as well as relations for determining the stiffness of a mechanically compliant specimen are presented. The model is experimentally supported by the results of cantilever-on-cantilever spring constant calibrations. The cantilever spring constants determined here agree with the values determined using the NIST electrostatic force balance within the limits of the largest uncertainty component, which had a relative value of less than 2.5%. This points the way for quantitative testing of micromechanical and nanomechanical components, more accurate calibration of AFM force, and provides nanotribologists access to information about contact friction from normal force curves.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantitative Friction-Force Measurements by Longitudinal Atomic Force Microscope Imaging
    Karhu, Eric
    Gooyers, Mark
    Hutter, Jeffrey L.
    LANGMUIR, 2009, 25 (11) : 6203 - 6213
  • [2] Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy
    Liu, Yu
    Guo, Qiuquan
    Nie, Heng-Yong
    Lau, W. M.
    Yang, Jun
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
  • [3] Quantitative Electromechanical Atomic Force Microscopy
    Collins, Liam
    Liu, Yongtao
    Ovchinnikova, Olga S.
    Proksch, Roger
    ACS NANO, 2019, 13 (07) : 8055 - 8066
  • [4] Lateral Force Calibration in Atomic Force Microscopy: Minireview
    Wang, Huabin
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (01) : 56 - 64
  • [5] Quantitative atomic force microscopy
    Soengen, Hagen
    Bechstein, Ralf
    Kuehnle, Angelika
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [6] Quantitative determination of contact stiffness using atomic force acoustic microscopy
    Rabe, U
    Amelio, S
    Kester, E
    Scherer, V
    Hirsekorn, S
    Arnold, W
    ULTRASONICS, 2000, 38 (1-8) : 430 - 437
  • [7] Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy
    Wang, Fei
    Zhao, Xuezeng
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (04)
  • [8] Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy
    Bien Cuong Tran Khac
    Chung, Koo-Hyun
    ULTRAMICROSCOPY, 2016, 161 : 41 - 50
  • [9] Corrected direct force balance method for atomic force microscopy lateral force calibration
    Asay, David B.
    Hsiao, Erik
    Kim, Seong H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (06)
  • [10] Atomic force microscopy and friction force microscopy studies of ferroelastic crystal surfaces
    Czajka, R
    Mielcarek, S
    Mróz, B
    Szuba, S
    Kasuya, A
    Kaszczyszyn, S
    WEAR, 2000, 238 (01) : 34 - 39