Energy landscapes for a machine learning application to series data

被引:20
|
作者
Ballard, Andrew J. [1 ]
Stevenson, Jacob D. [1 ]
Das, Ritankar [1 ]
Wales, David J. [1 ]
机构
[1] Univ Chem Labs, Lensfield Rd, Cambridge CB2 1EW, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2016年 / 144卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
LENNARD-JONES CLUSTERS; STATIONARY-POINTS; MONTE-CARLO; GLOBAL OPTIMIZATION; PHASE-CHANGES; SURFACES; COEXISTENCE; DYNAMICS; ATTRACTION; NETWORKS;
D O I
10.1063/1.4944672
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methods developed to explore and characterise potential energy landscapes are applied to the corresponding landscapes obtained from optimisation of a cost function in machine learning. We consider neural network predictions for the outcome of local geometry optimisation in a triatomic cluster, where four distinct local minima exist. The accuracy of the predictions is compared for fits using data from single and multiple points in the series of atomic configurations resulting from local geometry optimisation and for alternative neural networks. The machine learning solution landscapes are visualised using disconnectivity graphs, and signatures in the effective heat capacity are analysed in terms of distributions of local minima and their properties. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Energy landscapes for machine learning
    Ballard, Andrew J.
    Das, Ritankar
    Martiniani, Stefano
    Mehta, Dhagash
    Sagun, Levent
    Stevenson, Jacob D.
    Wales, David J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) : 12585 - 12603
  • [2] Application of Machine Learning Techniques to Ocean Mooring Time Series Data
    Sloyan, Bernadette M.
    Chapman, Christopher C.
    Cowley, Rebecca
    Charantonis, Anastase A.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2023, 40 (03) : 241 - 260
  • [3] Energy landscapes for a machine-learning prediction of patient discharge
    Das, Ritankar
    Wales, David J.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [4] Augmenting machine learning of energy landscapes with local structural information
    Honrao, Shreyas J.
    Xie, Stephen R.
    Hennig, Richard G.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (08)
  • [5] Machine learning assembly landscapes from particle tracking data
    Long, Andrew W.
    Zhang, Jie
    Granick, Steve
    Ferguson, Andrew L.
    SOFT MATTER, 2015, 11 (41) : 8141 - 8153
  • [6] Application of machine learning in ocean data
    Lou, Ranran
    Lv, Zhihan
    Dang, Shuping
    Su, Tianyun
    Li, Xinfang
    MULTIMEDIA SYSTEMS, 2023, 29 (03) : 1815 - 1824
  • [7] Application of Machine Learning for Cytometry Data
    Hu, Zicheng
    Bhattacharya, Sanchita
    Butte, Atul J.
    FRONTIERS IN IMMUNOLOGY, 2022, 12
  • [8] Application of machine learning in ocean data
    Ranran Lou
    Zhihan Lv
    Shuping Dang
    Tianyun Su
    Xinfang Li
    Multimedia Systems, 2023, 29 : 1815 - 1824
  • [9] Machine learning for the structure-energy-property landscapes of molecular crystals
    Musil, Felix
    De, Sandip
    Yang, Jack
    Campbell, Joshua E.
    Day, Graeme M.
    Ceriotti, Michele
    CHEMICAL SCIENCE, 2018, 9 (05) : 1289 - 1300
  • [10] Leveraging Event Structure for Adaptive Machine Learning on Big Data Landscapes
    Azodi, Amir
    Gawron, Marian
    Sapegin, Andrey
    Cheng, Feng
    Meinel, Christoph
    MOBILE, SECURE, AND PROGRAMMABLE NETWORKING, MSPN 2015, 2015, 9395 : 28 - 40