Refined crustal and uppermost mantle structure of southern California by ambient noise adjoint tomography

被引:35
|
作者
Wang, Kai [1 ,2 ]
Yang, Yingjie [1 ,2 ]
Basini, Piero [3 ,9 ]
Tong, Ping [4 ,5 ]
Tape, Carl [6 ,7 ]
Liu, Qinya [3 ,8 ]
机构
[1] Macquarie Univ, ARC Ctr Excellence Core Crust Fluid Syst, Sydney, NSW 2109, Australia
[2] Macquarie Univ, GEMOC ARC Natl Key Ctr Earth & Planetary Sci, Sydney, NSW 2109, Australia
[3] Univ Toronto, Dept Phys, Toronto, ON M5S 1A1, Canada
[4] Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 639798, Singapore
[5] Nanyang Technol Univ, Asian Sch Environm, Singapore 639798, Singapore
[6] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[7] Univ Alaska Fairbanks, Dept Geosci, Fairbanks, AK 99775 USA
[8] Univ Toronto, Dept Earth Sci, Toronto, ON M5S 1A1, Canada
[9] Total, F-64000 Pau, France
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Computational seismology; Seismic noise; Waveform inversion; Seismic tomography; Seismic interferometry; Surface wave and free oscillation; SURFACE-WAVE TOMOGRAPHY; CROSS-CORRELATION; SPECTRAL-ELEMENT; RADIAL ANISOTROPY; STRUCTURE BENEATH; SEISMIC NOISE; SE TIBET; 2-STATION ANALYSIS; ARRAY TOMOGRAPHY; FORM TOMOGRAPHY;
D O I
10.1093/gji/ggy312
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We construct an improved shear wave velocity (Vs) model of the southern Californian crust and uppermost mantle by performing an adjoint tomographic inversion using Rayleigh wave empirical Green's functions (EGFs) at 5-50 s periods from ambient noise cross correlations. Our initial model is the isotropic Vs model M16 from Tape et al., which was generated by three-component seismograms at 2-30 s periods from local earthquake data. Synthetic Green's functions (SGFs) from M16 show good agreement with the EGFs at 5-10 and 10-20 s period bands, but they have an average 2.1 s time advance at 20-50 s. By minimizing the traveltime differences between the EGFs and SGFs using a gradient-based algorithm, we successively refine the Vs model, and the total misfit is reduced by similar to 76.6 per cent from 1.75 to 0.41 after five iterations. Relative to M16, our new Vs model reveals: (1) a lower crust (20-30 km) with the mean Vs about 6 per cent slower; (2) a faster Vs speed in the middle and lower crust at depths greater than 10 km in the regions beneath the Los Angeles Basin and Central Transverse Range; (3) higher Vs in the lower crust beneath the westernmost Peninsular Range Batholith (PRB); and an enhanced high-velocity zone in the middle crust beneath Salton Trough Basin. Our updated model also reveals refined lateral velocity gradients across PRB, Sierra Nevada Batholith and San Andreas Fault. Our study demonstrates the improvement of lateral coverage and depth sensitivity from using ambient noise instead of only earthquake data. The numerical spectral-element solver used in adjoint tomography provides accurate structural sensitivity kernels, and hence generates more robust images than those by traditional ambient noise tomography based on ray theory.
引用
收藏
页码:844 / 863
页数:20
相关论文
共 50 条
  • [21] Ambient noise surface wave tomography of the Makran subduction zone,south-east Iran:Implications for crustal and uppermost mantle structures
    Mahsa Abdetedal
    Zaher Hossein Shomali
    Mohammad Reza Gheitanchi
    Earthquake Science, 2015, 28 (04) : 235 - 251
  • [22] The uppermost crust structure of Ischia (southern Italy) from ambient noise Rayleigh waves
    Strollo, R.
    Nunziata, C.
    Iannotta, A.
    Iannotta, D.
    JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2015, 297 : 39 - 51
  • [23] Crust and Uppermost Mantle Magma Plumbing System Beneath Changbaishan Intraplate Volcano, China/North Korea, Revealed by Ambient Noise Adjoint Tomography
    Fan, Xingli
    Guo, Zhen
    Zhao, Yang
    Chen, Qi-Fu
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (12)
  • [24] Adaptive ambient noise tomography and its application to the Garlock Fault, southern California
    Li, Peng
    Lin, Guoqing
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2014, 197 (02) : 1236 - 1249
  • [25] Crustal structure of Australia from ambient seismic noise tomography
    Saygin, Erdinc
    Kennett, B. L. N.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2012, 117
  • [26] Crustal structure of Borneo, Makassar Strait and Sulawesi from ambient noise tomography
    Heryandoko, N.
    Nugraha, A. D.
    Zulfakriza, Z.
    Rosalia, S.
    Yudistira, T.
    Rohadi, S.
    Daryono, D.
    Supendi, P.
    Nurpujiono, N.
    Yusuf, F.
    Fauzi, F.
    Lesmana, A.
    Husni, Y. M.
    Prayitno, B. S.
    Triyono, R.
    Adi, S. P.
    Karnawati, D.
    Greenfield, T.
    Rawlinson, N.
    Widiyantoro, S.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (02) : 949 - 964
  • [27] Imaging the crust and uppermost mantle structure of Portugal (West Iberia) with seismic ambient noise
    Silveira, Graca
    Dias, Nuno Afonso
    Kiselev, Sergey
    Stutzmann, Eleonore
    Custodio, Susana
    Schimmel, Martin
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 230 (02) : 1106 - 1120
  • [28] Crustal Structure of the Indochina Peninsula From Ambient Noise Tomography
    Wu, Shanshan
    Yu, Youqiang
    Yang, Ting
    Xue, Mei
    Tilmann, Frederik
    Chen, Haopeng
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2022, 127 (05)
  • [29] Crustal and uppermost mantle structure beneath Tristan da Cunha using surface wave phase velocity from horizontal components OBS ambient seismic noise
    Zhang, Hao
    Geissler, Wolfram H.
    Schmidt-Aursch, Mechita C.
    Bonadio, Raffaele
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 232 (02) : 1276 - 1292
  • [30] Ambient noise tomography of the southern sector of the Cantabrian Mountains, NW Spain
    Acevedo, Jorge
    Fernandez-Viejo, Gabriela
    Llana-Funez, Sergio
    Lopez-Fernandez, Carlos
    Olona, Javier
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 219 (01) : 479 - 495