Signal reshaping and noise suppression using photonic crystal Fano structures

被引:22
作者
Bekele, Dagmawi A. [1 ]
Yu, Yi [1 ]
Hu, Hao [1 ]
Guan, Pengyu [1 ]
Galili, Michael [1 ]
Ottaviano, Luisa [1 ]
Oxenlowe, Leif Katsuo [1 ]
Yvind, Kresten [1 ]
Mork, Jesper [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DTU Fotonik, DK-2800 Lyngby, Denmark
关键词
RESONANCES; NANOCAVITY; REGENERATION; INP; MICROCAVITY; SYMMETRY; SYSTEMS; PHASE; CHIP; SOI;
D O I
10.1364/OE.26.019596
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrate the use of photonic crystal Fano resonances for reshaping optical data signals. We show that the combination of an asymmetric Fano resonance and carrier-induced nonlinear effects in a nanocavity can be used to realize a nonlinear power transfer function, which is a key functionality for optical signal regeneration, particularly for suppression of amplitude fluctuations of data signals. The experimental results are explained using simulations based on coupled-mode theory and also compared to the case of using conventional Lorentzian-shaped resonances. Using indium phosphide photonic crystal membrane structures, we demonstrate reshaping of 2 Gbit/s and 10 Gbit/s return-to-zero on-off keying (RZ-OOK) data signals at telecom wavelengths around 1550 nm. Eye diagrams of the reshaped signals show that amplitude noise fluctuations can be significantly suppressed. The reshaped signals are quantitatively analyzed using bit-error ratio (BER) measurements, which show up to 2 dB receiver sensitivity improvement at a BER of 10(-9) compared to a degraded input noisy signal. Due to efficient light-matter interaction in the high-quality factor and small mode-volume photonic crystal nanocavity, low energy consumption, down to 104 FJ/bit and 41 FJ/bit for 2 Gbit/s and 10 Gbit/s, respectively, has been achieved. Device perspectives and limitations are discussed. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19596 / 19605
页数:10
相关论文
共 35 条
[1]  
Agrawal G.P., 2012, Fiber-Optic Communication Systems
[2]  
Bekele D. A., 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), DOI 10.1109/CLEOE-EQEC.2017.8087107
[3]  
Bekele D. A., 2017, P SOC PHOTO-OPT INS, V10345
[4]   Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures [J].
Bekele, Dagmawi A. ;
Yu, Yi ;
Hu, Hao ;
Guan, Pengyu ;
Ottaviano, Luisa ;
Galili, Michael ;
Oxenlowe, Leif Katsuo ;
Yvind, Kresten ;
Mork, Jesper .
OPTICS LETTERS, 2018, 43 (04) :955-958
[5]  
Ding Yunhong, 2013, P 2013 C LAS EL PAC, V38, P1
[6]   Sharp asymmetric line shapes in side-coupled waveguide-cavity systems [J].
Fan, SH .
APPLIED PHYSICS LETTERS, 2002, 80 (06) :908-910
[7]   Improved switching using Fano resonances in photonic crystal structures [J].
Heuck, Mikkel ;
Kristensen, Philip Trost ;
Elesin, Yuriy ;
Mork, Jesper .
OPTICS LETTERS, 2013, 38 (14) :2466-2468
[8]   Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches [J].
Heuck, Mikkel ;
Kristensen, Philip Trost ;
Mork, Jesper .
OPTICS EXPRESS, 2011, 19 (19) :18410-18422
[9]  
Joannopoulos J. D., 2011, Photonic Crystals: Molding the Flow of Light
[10]  
Lavigne B, 2001, ECOC'01: 27TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, VOLS 1-6, P290, DOI 10.1109/ECOC.2001.989632