Review on Colloidal Quantum Dots Luminescent Solar Concentrators

被引:32
作者
Kim, Andrew [1 ]
Hosseinmardi, Alireza [2 ]
Annamalai, Pratheep K. [2 ]
Kumar, Pawan [3 ,4 ]
Patel, Rajkumar [5 ]
机构
[1] Cooper Union Adv Sci & Art, Dept Chem Engn, New York, NY 10003 USA
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, St Lucia, Qld 4072, Australia
[3] Ctr Energie Mat Telecommun INRS EMT, Inst Natl Rech Sci, Varennes, PQ, Canada
[4] Univ Oklahoma, Dept Chem & Biochem, 101 Stephenson Pkwy, Norman, OK 73019 USA
[5] Yonsei Univ, Energy & Environm Sci & Engn EESE, Integrated Sci & Engn Div ISED, Underwood Int Coll, 85 Songdogwahak Ro, Incheon 21938, South Korea
来源
CHEMISTRYSELECT | 2021年 / 6卷 / 20期
关键词
Core; Shell; Efficiency; Luminescent; Nanoparticles; Solar Concentrator; Quantum Dots; LARGE STOKES-SHIFT; CARBON-DOTS; HIGH-PERFORMANCE; PEROVSKITE NANOCRYSTALS; OPTICAL-PROPERTIES; CHARGE-TRANSFER; ENERGY-TRANSFER; EFFICIENCY; REABSORPTION; TRANSPARENT;
D O I
10.1002/slct.202100674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Luminescent solar concentrators (LSCs) have recently gained popularity as an effective solution to increase solar energy conversion. Utilizing LSCs together with solar cells can generate more energy at a lower cost than using only solar cells. LSCs operate by utilizing luminophores, molecules that absorb incident solar irradiation and re-emit photons, and waveguides that redirect emitted photons to the edges of a glass or polymer slab at high concentrations. Many quantum dots (QDs) have been the focus of much research as luminophores for LSCs, owing to their high quantum yields (QYs), controllable absorption/emission spectra, good stability, and ease of synthesis. Various QDs, such as CdSe, PbS, CdS, AgInS2, Si, and C, have been modified to enhance their optical performances in LSCs, often measured by their optical efficiencies, internal/external quantum efficiencies, and power conversion efficiencies. This review appraises the latest developments in colloidal QDs-basic QDs, doped QDs, core/shell QDs, hybrid QDs, and Si-based QD-for their applications in LSCs. Other factors that enhance an LSC's efficiency, such as altering the polymer matrix and using distributed Bragg reflectors, are discussed. The development of highly efficient, QD-based LSCs will be essential for increasing solar energy production worldwide.
引用
收藏
页码:4948 / 4967
页数:20
相关论文
共 180 条
[11]   Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators [J].
Bomm, Jana ;
Buechtemann, Andreas ;
Chatten, Amanda J. ;
Bose, Rahul ;
Farrell, Daniel J. ;
Chan, Ngai L. A. ;
Xiao, Ye ;
Slooff, Lenneke H. ;
Meyer, Toby ;
Meyer, Andreas ;
van Sark, Wilfried G. J. H. M. ;
Koole, Rolf .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (08) :2087-2094
[12]   Nanocrystals for Luminescent Solar Concentrators [J].
Bradshaw, Liam R. ;
Knowles, Kathryn E. ;
McDowall, Stephen ;
Gamelin, Daniel R. .
NANO LETTERS, 2015, 15 (02) :1315-1323
[13]   Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate [J].
Breger, Joyce C. ;
Susumu, Kimihiro ;
Lasarte-Aragones, Guillermo ;
Diaz, Sebastian A. ;
Brask, Jesper ;
Medintz, Igor L. .
ACS SENSORS, 2020, 5 (05) :1295-1304
[14]   Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells [J].
Brennan, Lorcan J. ;
Purcell-Milton, Finn ;
McKenna, Barry ;
Watson, Trystan M. ;
Gun'ko, Yurii K. ;
Evans, Rachel C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (06) :2671-2680
[15]   Mn2+/Yb3+ Codoped CsPbCl3 Perovskite Nanocrystals with Triple-Wavelength Emission for Luminescent Solar Concentrators [J].
Cai, Tong ;
Wang, Junyu ;
Li, Wenhao ;
Hills-Kimball, Katie ;
Yang, Hanjun ;
Nagaoka, Yasutaka ;
Yuan, Yucheng ;
Zia, Rashid ;
Chen, Ou .
ADVANCED SCIENCE, 2020, 7 (18)
[16]   Tailored near-infrared-emitting colloidal heterostructured quantum dots with enhanced visible light absorption for high performance photoelectrochemical cells [J].
Channa, Ali Imran ;
Tong, Xin ;
Xu, Jing-Yin ;
Liu, Yongchen ;
Wang, Changmeng ;
Sial, Muhammad Naeem ;
Yu, Peng ;
Ji, Haining ;
Niu, Xiaobin ;
Wang, Zhiming M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (17) :10225-10230
[17]   Quantum dot solar concentrators [J].
Chatten, AJ ;
Barnham, KWJ ;
Buxton, BF ;
Ekins-Daukes, NJ ;
Malik, MA .
SEMICONDUCTORS, 2004, 38 (08) :909-917
[18]   Hydrogel-Embedded Quantum Dot-Transcription Factor Sensors for Quantitative Progesterone Detection [J].
Chen, Mingfu ;
Grazon, Chloe ;
Sensharma, Prerana ;
Nguyen, Thuy T. ;
Feng, Yunpeng ;
Chern, Margaret ;
Baer, R. C. ;
Varongchayakul, Nitinun ;
Cook, Katherine ;
Lecommandoux, Sebastien ;
Klapperich, Catherine M. ;
Galagan, James E. ;
Dennis, Allison M. ;
Grinstaff, Mark W. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (39) :43513-43521
[19]   Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite [J].
Chen, Sheng ;
Wen, Xiaoming ;
Huang, Shujuan ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Green, Martin ;
Ho-Baillie, Anita .
SOLAR RRL, 2017, 1 (01)
[20]   Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist [J].
Chen, Sung-Wen Huang ;
Huang, Yu-Ming ;
Singh, Konthoujam James ;
Hsu, Yu-Chien ;
Liou, Fang-Jyun ;
Song, Jie ;
Choi, Joowon ;
Lee, Po-Tsung ;
Lin, Chien-Chung ;
Chen, Zhong ;
Han, Jung ;
Wu, Tingzhu ;
Kuo, Hao-Chung .
PHOTONICS RESEARCH, 2020, 8 (05) :630-636