3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine

被引:22
作者
Merk, Markus [1 ,2 ]
Chirikian, Orlando [2 ]
Adlhart, Christian [1 ]
机构
[1] Zurich Univ Appl Sci ZHAW, Inst Chem & Biotechnol, CH-8820 Wadenswil, Switzerland
[2] Univ Calif Santa Barbara UCSB, Biomol Sci & Engn, Santa Barbara, CA 93106 USA
关键词
self-assembly; 3D electrospun nanofibrous scaffold; nanofiber aerogels; tissue engineering; electrospun sponge; polycaprolactone; biodegradation;
D O I
10.3390/ma14082006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.
引用
收藏
页数:15
相关论文
共 82 条
[1]   Engineering tissues, organs and cells [J].
Atala, Anthony .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2007, 1 (02) :83-96
[2]   Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties [J].
Bhattarai, Narayan ;
Li, Zhensheng ;
Edmondson, Dennis ;
Zhang, Miqin .
ADVANCED MATERIALS, 2006, 18 (11) :1463-+
[3]   Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering [J].
Bi, Long ;
Cao, Zheng ;
Hu, Yunyu ;
Song, Yang ;
Yu, Long ;
Yang, Bo ;
Mu, Jihong ;
Huang, Zhaosong ;
Han, Yisheng .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (01) :51-62
[4]   Physicochemical characterisation of degrading polycaprolactone scaffolds [J].
Bosworth, Lucy A. ;
Downes, Sandra .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (12) :2269-2276
[5]   Electrospinning for regenerative medicine: a review of the main topics [J].
Braghirolli, Daikelly I. ;
Steffens, Daniela ;
Pranke, Patricia .
DRUG DISCOVERY TODAY, 2014, 19 (06) :743-753
[6]   Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin [J].
Butler, MF ;
Ng, YF ;
Pudney, PDA .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2003, 41 (24) :3941-3953
[7]   Electrospinning of collagen and elastin for tissue engineering applications [J].
Buttafoco, L ;
Kolkman, NG ;
Engbers-Buijtenhuijs, P ;
Poot, AA ;
Dijkstra, PJ ;
Vermes, I ;
Feijen, J .
BIOMATERIALS, 2006, 27 (05) :724-734
[8]   Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol vinyl acetate) [J].
CauichRodriguez, JV ;
Deb, S ;
Smith, R .
BIOMATERIALS, 1996, 17 (23) :2259-2264
[9]   Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL [J].
Causa, Filippo ;
Battista, Edmond ;
Della Moglie, Raffaella ;
Guarnieri, Daniela ;
Iannone, Maria ;
Netti, Paolo A. .
LANGMUIR, 2010, 26 (12) :9875-9884
[10]   A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery [J].
Chen, SC ;
Wu, YC ;
Mi, FL ;
Lin, YH ;
Yu, LC ;
Sung, HW .
JOURNAL OF CONTROLLED RELEASE, 2004, 96 (02) :285-300