Distributed Bayesian Probabilistic Matrix Factorization

被引:11
作者
Aa, Tom Vander [1 ]
Chakroun, Imen [1 ]
Haber, Tom [2 ]
机构
[1] IMEC, Exascience Lab, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Expertise Ctr Digital Media, Wetenschapspk 2, B-3590 Diepenbeek, Belgium
来源
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017) | 2017年 / 108卷
关键词
Probabilistic matrix factorization algorithm; Collaborative filtering; Machine learning; PGAS; multi-core;
D O I
10.1016/j.procs.2017.05.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used on large scale data because of the prohibitive cost. In this paper, we propose a distributed high-performance parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We show by using efficient load balancing using work stealing on a single node, and by using asynchronous communication in the distributed version we beat state of the art implementations. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1030 / 1039
页数:10
相关论文
共 19 条
[1]  
Ahn Sungjin, 2015, P 21 ACM SIGKDD INT
[2]  
[Anonymous], 2011, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
[3]  
[Anonymous], 1998, Matrix algorithms: volume 1: basic decompositions
[4]  
[Anonymous], 1994, TECHNICAL REPORT
[5]  
[Anonymous], 2008, P INT C MACH LEARN
[6]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[7]  
Board O., OPENMP FOR
[8]  
Grunewald D., 2013, INT C PGAS PROGR MOD, V243, P52
[9]  
Guo Yong., 2014, ICPE, P289, DOI [10.1145/2568088.2576761, DOI 10.1145/2568088.2576761]
[10]   The MovieLens Datasets: History and Context [J].
Harper, F. Maxwell ;
Konstan, Joseph A. .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2016, 5 (04)